Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach

被引:3522
作者
Aerts, Hugo J. W. L. [1 ,2 ,3 ,4 ]
Velazquez, Emmanuel Rios [1 ,2 ]
Leijenaar, Ralph T. H. [1 ]
Parmar, Chintan [1 ,2 ]
Grossmann, Patrick [2 ]
Cavalho, Sara [1 ]
Bussink, Johan [5 ]
Monshouwer, Rene [5 ]
Haibe-Kains, Benjamin [6 ,7 ]
Rietveld, Derek [8 ]
Hoebers, Frank [1 ]
Rietbergen, Michelle M. [9 ]
Leemans, C. Rene [9 ]
Dekker, Andre [1 ]
Quackenbush, John [4 ]
Gillies, Robert J. [10 ]
Lambin, Philippe [1 ]
机构
[1] Maastricht Univ, Res Inst GROW, Dept Radiat Oncol MAASTRO, NL-6229 ET Maastricht, Netherlands
[2] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dana Farber Canc Inst,Dept Radiat Oncol, Boston, MA 02215 USA
[3] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dana Farber Canc Inst,Dept Radiol, Boston, MA 02215 USA
[4] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[5] Radboud Univ Nijmegen, Med Ctr, Dept Radiat Oncol, NL-6500 HB Nijmegen, Netherlands
[6] Univ Toronto, Princess Margaret Canc Ctr, Univ Hlth Network, Toronto, ON M5G 1L7, Canada
[7] Univ Toronto, Dept Med Biophys, Toronto, ON M5G 1L7, Canada
[8] Vrije Univ Amsterdam, Med Ctr, Dept Radiat Oncol, NL-1081 HZ Amsterdam, Netherlands
[9] Vrije Univ Amsterdam, Med Ctr, Dept Otolaryngol Head & Neck Surg, NL-1081 HZ Amsterdam, Netherlands
[10] H Lee Moffitt Canc Ctr & Res Inst, Dept Canc Imaging & Metab, Tampa, FL 33612 USA
关键词
CELL LUNG-CANCER; HETEROGENEITY; VARIABILITY; EVOLUTION; RECIST; STAGE;
D O I
10.1038/ncomms5006
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
uman cancers exhibit strong phenotypic differences that can be visualized noninvasively by medical imaging. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. Here we present a radiomic analysis of 440 features quantifying tumour image intensity, shape and texture, which are extracted from computed tomography data of 1,019 patients with lung or head-and-neck cancer. We find that a large number of radiomic features have prognostic power in independent data sets of lung and head-and-neck cancer patients, many of which were not identified as significant before. Radiogenomics analysis reveals that a prognostic radiomic signature, capturing intratumour heterogeneity, is associated with underlying gene-expression patterns. These data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost.
引用
收藏
页数:8
相关论文
共 28 条
  • [1] Early Changes in Tumor Size in Patients Treated for Advanced Stage Nonsmall Cell Lung Cancer Do Not Correlate With Survival
    Birchard, Katherine R.
    Hoang, Jenny K.
    Herndon, James E., Jr.
    Patz, Edward F., Jr.
    [J]. CANCER, 2009, 115 (03) : 581 - 586
  • [2] A Collaborative Enterprise for Multi-Stakeholder Participation in the Advancement of Quantitative Imaging
    Buckler, Andrew J.
    Bresolin, Linda
    Dunnick, N. Reed
    Sullivan, Daniel C.
    [J]. RADIOLOGY, 2011, 258 (03) : 906 - 914
  • [3] Quantitative Imaging Test Approval and Biomarker Qualification: Interrelated but Distinct Activities
    Buckler, Andrew J.
    Bresolin, Linda
    Dunnick, N. Reed
    Sullivan, Daniel C.
    [J]. RADIOLOGY, 2011, 259 (03) : 875 - 884
  • [4] RECIST: right time to renovate?
    Burton, Adrian
    [J]. LANCET ONCOLOGY, 2007, 8 (06) : 464 - 465
  • [5] Compton C.C., 2012, AJCC cancer staging atlas a companion to the seventh editions of the AJCC cancer staging manual and handbook
  • [6] Identification of noninvasive imaging surrogates for brain tumor gene-expression modules
    Diehn, Maximilian
    Nardini, Christine
    Wang, David S.
    McGovern, Susan
    Jayaraman, Mahesh
    Liang, Yu
    Alclape, Kenneth
    Cha, Soonmee
    Kuo, Michael D.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (13) : 5213 - 5218
  • [7] Exploring feature-based approaches in PET images for predicting cancer treatment outcomes
    El Naqa, I.
    Grigsby, P. W.
    Apte, A.
    Kidd, E.
    Donnelly, E.
    Khullar, D.
    Chaudhari, S.
    Yang, D.
    Schmitt, M.
    Laforest, Richard
    Thorstad, W. L.
    Deasy, J. O.
    [J]. PATTERN RECOGNITION, 2009, 42 (06) : 1162 - 1171
  • [8] Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: Preliminary evidence of an association with tumour metabolism, stage, and survival
    Ganeshan, B.
    Skogen, K.
    Pressney, I.
    Coutroubis, D.
    Miles, K.
    [J]. CLINICAL RADIOLOGY, 2012, 67 (02) : 157 - 164
  • [9] Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival
    Ganeshan, Balaji
    Panayiotou, Elleny
    Burnand, Kate
    Dizdarevic, Sabina
    Miles, Ken
    [J]. EUROPEAN RADIOLOGY, 2012, 22 (04) : 796 - 802
  • [10] How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine
    Gerlinger, M.
    Swanton, C.
    [J]. BRITISH JOURNAL OF CANCER, 2010, 103 (08) : 1139 - 1143