Large-scale structure shocks at low and high redshifts

被引:64
作者
Furlanetto, SR
Loeb, A
机构
[1] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[2] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
关键词
cosmology : theory; intergalactic medium; large-scale structure of universe;
D O I
10.1086/422242
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Cosmological simulations show that, at the present time, a substantial fraction of the gas in the intergalactic medium (IGM) has been shock heated to T greater than or similar to 10(5) K. Here we develop an analytic model to describe the fraction of shocked, moderately overdense gas in the IGM. The model is an extension of the Press & Schechter description for the mass function of halos: we assume that large-scale structure shocks occur at a fixed overdensity during nonlinear collapse. This in turn allows us to compute the fraction of gas at a given redshift that has been shock heated to a specified temperature. We show that if strong shocks occur at turnaround, our model provides a reasonable description of the temperature distribution seen in cosmological simulations at z similar to 0, although it does overestimate the importance of weak shocks. We then apply our model to shocks at high redshifts. We show that before reionization, the thermal energy of the IGM is dominated by large-scale structure shocks ( rather than virialized objects). These shocks can have a variety of effects, including stripping less than or similar to10% of the gas from dark matter minihalos, accelerating cosmic rays, and creating a diffuse radiation background from inverse Compton and cooling radiation. This radiation background develops before the first stars form and could have measurable effects on molecular hydrogen formation and the spin temperature of the 21 cm transition of neutral hydrogen. Finally, we show that shock heating will also be directly detectable by redshifted 21 cm measurements of the neutral IGM in the young universe.
引用
收藏
页码:642 / 654
页数:13
相关论文
共 68 条
[11]   Profiles of dark haloes: evolution, scatter and environment [J].
Bullock, JS ;
Kolatt, TS ;
Sigad, Y ;
Somerville, RS ;
Kravtsov, AV ;
Klypin, AA ;
Primack, JR ;
Dekel, A .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 321 (03) :559-575
[12]  
CEN R, 2003, UNPUB APJ, Patent No. 59659
[13]   GRAVITATIONAL COLLAPSE OF SMALL-SCALE STRUCTURE AS THE ORIGIN OF THE LYMAN-ALPHA FOREST [J].
CEN, RY ;
MIRALDAESCUDE, J ;
OSTRIKER, JP ;
RAUCH, M .
ASTROPHYSICAL JOURNAL, 1994, 437 (01) :L9-L12
[14]   Where are the baryons? [J].
Cen, RY ;
Ostriker, JP .
ASTROPHYSICAL JOURNAL, 1999, 514 (01) :1-6
[15]   The spin-kinetic temperature coupling and the heating rate due to Lyα scattering before reionization:: Predictions for 21 centimeter emission and absorption [J].
Chen, XL ;
Miralda-Escudé, J .
ASTROPHYSICAL JOURNAL, 2004, 602 (01) :1-11
[16]   Probing beyond the epoch of hydrogen reionization with 21 centimeter radiation [J].
Ciardi, B ;
Madau, P .
ASTROPHYSICAL JOURNAL, 2003, 596 (01) :1-8
[17]   The low-redshift Lyα forest in cold dark matter cosmologies [J].
Davé, R ;
Hernquist, L ;
Katz, N ;
Weinberg, DH .
ASTROPHYSICAL JOURNAL, 1999, 511 (02) :521-545
[18]   Baryons in the warm-hot intergalactic medium [J].
Davé, R ;
Cen, R ;
Ostriker, JP ;
Bryan, GL ;
Hernquist, L ;
Katz, N ;
Weinberg, DH ;
Norman, ML ;
O'Shea, B .
ASTROPHYSICAL JOURNAL, 2001, 552 (02) :473-483
[19]   A SLICE OF THE UNIVERSE [J].
DELAPPARENT, V ;
GELLER, MJ ;
HUCHRA, JP .
ASTROPHYSICAL JOURNAL, 1986, 302 (01) :L1-L5
[20]   Photoionization feedback in low-mass galaxies at high redshift [J].
Dijkstra, M ;
Haiman, Z ;
Rees, MJ ;
Weinberg, DH .
ASTROPHYSICAL JOURNAL, 2004, 601 (02) :666-675