Dynamic Nuclear Spin Polarization of Liquids and Gases in Contact with Nanostructured Diamond

被引:49
作者
Abrams, Daniel [1 ]
Trusheim, Matthew E. [3 ]
Englund, Dirk R. [3 ]
Shattuck, Mark D. [1 ,2 ]
Meriles, Carlos A. [1 ]
机构
[1] CUNY City Coll, Dept Phys, New York, NY 10031 USA
[2] CUNY City Coll, Benjamin Levich Inst, New York, NY 10031 USA
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Nitrogen-vacancy centers; nanostructured diamond; dynamic nuclear polarization; hyperpolarization; surface spin relaxation; microfluidics; MAGNETIC-RESONANCE; SPECTROSCOPY; NANOCRYSTAL; CENTERS; NMR;
D O I
10.1021/nl500147b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Optical pumping of spin polarization can produce almost complete spin order but its application is restricted to select atomic gases and condensed matter systems. Here, we theoretically investigate a novel route to nuclear spin hyperpolarization in arbitrary fluids in which target molecules are exposed to polarized paramagnetic centers located near the surface of a host material. We find that adsorbed nuclear spins relax to positive or negative polarization depending on the average paramagnetic center depth and nanoscale surface topology. For the particular case of optically pumped nitrogen-vacancy centers in diamond, we calculate strong nuclear spin polarization at moderate magnetic fields provided the crystal surface is engineered with surface roughness in the few-nanometer range. The equilibrium nuclear spin temperature depends only weakly on the correlation time describing the molecular adsorption dynamics and is robust in the presence of other, unpolarized paramagnetic centers. These features could be exploited to polarize flowing liquids or gases, as we illustrate numerically for the model case of a fluid brought in contact with an optically pumped diamond nanostructure.
引用
收藏
页码:2471 / 2478
页数:8
相关论文
共 30 条
[1]  
Acosta V., 2005, MRS BULL, V38, P127
[2]   Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR [J].
Ardenkjaer-Larsen, JH ;
Fridlund, B ;
Gram, A ;
Hansson, G ;
Hansson, L ;
Lerche, MH ;
Servin, R ;
Thaning, M ;
Golman, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (18) :10158-10163
[3]   Dressed-State Resonant Coupling between Bright and Dark Spins in Diamond [J].
Belthangady, C. ;
Bar-Gill, N. ;
Pham, L. M. ;
Arai, K. ;
Le Sage, D. ;
Cappellaro, P. ;
Walsworth, R. L. .
PHYSICAL REVIEW LETTERS, 2013, 110 (15)
[4]  
Cassidy MC, 2013, NAT NANOTECHNOL, V8, P363, DOI [10.1038/nnano.2013.65, 10.1038/NNANO.2013.65]
[5]   SURFACE RELAXATION MECHANISMS OF LASER-POLARIZED XE-129 [J].
DRIEHUYS, B ;
CATES, GD ;
HAPPER, W .
PHYSICAL REVIEW LETTERS, 1995, 74 (24) :4943-4946
[6]  
Grinolds MS, 2013, NAT PHYS, V9, P215, DOI [10.1038/nphys2543, 10.1038/NPHYS2543]
[7]   Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution [J].
Hall, DA ;
Maus, DC ;
Gerfen, GJ ;
Inati, SJ ;
Becerra, LR ;
Dahlquist, FW ;
Griffin, RG .
SCIENCE, 1997, 276 (5314) :930-932
[8]   Chemical control of the charge state of nitrogen-vacancy centers in diamond [J].
Hauf, M. V. ;
Grotz, B. ;
Naydenov, B. ;
Dankerl, M. ;
Pezzagna, S. ;
Meijer, J. ;
Jelezko, F. ;
Wrachtrup, J. ;
Stutzmann, M. ;
Reinhard, F. ;
Garrido, J. A. .
PHYSICAL REVIEW B, 2011, 83 (08)
[9]  
Hausser K. H., 1968, Adv. Magn. Opt. Reson, V3, P79, DOI DOI 10.1016/B978-1-4832-3116-7.50010-2
[10]   Temperature- and Magnetic-Field-Dependent Longitudinal Spin Relaxation in Nitrogen-Vacancy Ensembles in Diamond [J].
Jarmola, A. ;
Acosta, V. M. ;
Jensen, K. ;
Chemerisov, S. ;
Budker, D. .
PHYSICAL REVIEW LETTERS, 2012, 108 (19)