Molecular dynamics simulation of carbon nanotube structure

被引:9
作者
Brodka, A.
Koloczek, J.
Burian, A.
Dore, J. C.
Hannon, A. C.
Fonseca, A.
机构
[1] Silesian Univ, Inst Phys, PL-40007 Katowice, Poland
[2] Univ Kent, Sch Phys Sci, Canterbury CT2 7NR, Kent, England
[3] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England
[4] Fac Univ Notre Dame Paix, Lab Resonance Magnet Nucl, B-5000 Namur, Belgium
关键词
D O I
10.1016/j.molstruc.2006.01.055
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon nanotubes with the Stone-Wales defects were generated, and molecular dynamics simulations of the nanotubes have been performed at temperature of 300 K using the reactive empirical bond order potential and Lennard-Jones one. The carbon configurations obtained from the simulations were used to calculate the powder diffraction patterns, which have been converted to a real space representation, yielding a pair correlation function. The theoretical results are compared with the pulsed neutrons experimental data for the carbon nanotubes synthesised by catalytic chemical vapour deposition. These comparisons show important influence of the Stone-Wales defects on the simulated results and their best agreement with the experimental data is obtained for 0.87% concentration of the defects. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:78 / 81
页数:4
相关论文
共 20 条
[1]  
Allen M. P., 1990, COMPUTER SIMULATION
[2]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[3]   EMPIRICAL POTENTIAL FOR HYDROCARBONS FOR USE IN SIMULATING THE CHEMICAL VAPOR-DEPOSITION OF DIAMOND FILMS [J].
BRENNER, DW .
PHYSICAL REVIEW B, 1990, 42 (15) :9458-9471
[4]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[5]   Radial distribution function analysis of spatial atomic correlations in carbon nanotubes [J].
Burian, A ;
Koloczek, J ;
Dore, JC ;
Hannon, AC ;
Nagy, JB ;
Fonseca, A .
DIAMOND AND RELATED MATERIALS, 2004, 13 (4-8) :1261-1265
[6]  
BURIAN A, IN PRESS DIAM RELAT
[7]   Defects in carbon nanotubes [J].
Charlier, JC .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :1063-1069
[8]   Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method [J].
Colomer, JF ;
Stephan, C ;
Lefrant, S ;
Van Tendeloo, G ;
Willems, I ;
Kónya, Z ;
Fonseca, A ;
Laurent, C ;
Nagy, JB .
CHEMICAL PHYSICS LETTERS, 2000, 317 (1-2) :83-89
[9]   Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential [J].
Girifalco, LA ;
Hodak, M ;
Lee, RS .
PHYSICAL REVIEW B, 2000, 62 (19) :13104-13110
[10]   NEW ONE-DIMENSIONAL CONDUCTORS - GRAPHITIC MICROTUBULES [J].
HAMADA, N ;
SAWADA, S ;
OSHIYAMA, A .
PHYSICAL REVIEW LETTERS, 1992, 68 (10) :1579-1581