共 60 条
Mycobacterium bovis bacillus calmette-guerin induces TLR2-mediated formation of lipid bodies:: Intracellular domains for eicosanoid synthesis in vivo
被引:237
作者:
D'Avila, Heloisa
Melo, Rossana C. N.
Parreira, Gleydes G.
Werneck-Barroso, Eduardo
Castro-Faria-Neto, Hugo C.
Bozza, Patricia T.
机构:
[1] Inst Oswaldo Cruz, Fundacao Oswaldo Cruz, Dept Fisiol & Farmacodinam, Lab Imunofarmacol, BR-21045900 Rio De Janeiro, Brazil
[2] Univ Fed Juiz De Fora, Dept Biol, Lab Biol Celular, Juiz De Fora, MG, Brazil
[3] Univ Fed Minas Gerais, Dept Morphol, Belo Horizonte, MG, Brazil
[4] Fundacao Oswaldo Cruz, Lab Farmacocinet, Rio De Janeiro, Brazil
关键词:
D O I:
10.4049/jimmunol.176.5.3087
中图分类号:
R392 [医学免疫学];
Q939.91 [免疫学];
学科分类号:
100102 ;
摘要:
Differentiation of macrophages into foamy (lipid-laden) macrophages is a common pathological observation in tuberculous granulomas both in experimental settings as well as in clinical conditions; however, the mechanisms that regulate intracellular lipid accumulation in the course of mycobacterial infection and their significance to pathophysiology of tuberculosis are not well understood. In this study, we investigated the mechanisms of formation and function of lipid-laden macrophages in a murine model of tuberculosis. Mycobacterium bovis bacillus Calmette-Guerin (BCG), but not Mycobacterium smegmatis, induced a dose- and time-dependent increase in lipid body-inducible nonmembrane-bound cytoplasmic lipid domain size and numbers. Lipid body formation was drastically inhibited in TLR2-, but not in TLR4-deficient mice, indicating a role for TLR2 in BCG recognition and signaling to form lipid bodies. Increase in lipid bodies during infection correlated with increased generation of PGE(2) and localization of cyclooxygenase-2 within lipid bodies. Moreover, we demonstrated by intracellular immunofluorescent localization of newly formed eicosanoid that lipid bodies were the predominant sites of PGE(2) synthesis in activated macrophages. Our findings demonstrated that BCG-induced lipid body formation is TLR2 mediated and these structures function as signaling platforms in inflammatory mediator production, because compartmentalization of substrate and key enzymes within lipid bodies has impact on the capacity of activated leukocytes to generate increased amounts of eicosanoids during experimental infection by BCG.
引用
收藏
页码:3087 / 3097
页数:11
相关论文