Aspects of duality and confining strings

被引:11
作者
Miettinen, M
Niemi, AJ
Stroganov, Y
机构
[1] Uppsala Univ, Dept Theoret Phys, S-75108 Uppsala, Sweden
[2] Mittag Leffler Inst, S-18262 Djursholm, Sweden
[3] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland
[4] Inst High Energy Phys, Protvino, Moscow Region, Russia
[5] Kyoto Univ, Math Sci Res Inst, Kyoto 606, Japan
关键词
D O I
10.1016/S0370-2693(99)01479-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We inspect the energy spectrum of a confining string, at the classical level in an effective field theory model, The spectrum can be characterized by a spectral function, and twisting and bending of the string is manifested by the invariance of this function under a duality transformation. Both general considerations and numerical simulations reveal that the spectral function can be approximated by a simple rational form. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:303 / 308
页数:6
相关论文
共 17 条
[1]   Knots as stable soliton solutions in a three-dimensional classical field theory [J].
Battye, RA ;
Sutcliffe, PM .
PHYSICAL REVIEW LETTERS, 1998, 81 (22) :4798-4801
[2]  
BATTYE RA, HEPTH9811077
[3]  
CHO YM, HEPTH9905215
[4]   Partial duality in SU(N) Yang-Mills theory [J].
Faddeev, L ;
Niemi, AJ .
PHYSICS LETTERS B, 1999, 449 (3-4) :214-218
[5]   Stable knot-like structures in classical field theory [J].
Faddeev, L ;
Niemi, AJ .
NATURE, 1997, 387 (6628) :58-61
[6]   Partially dual variables in SU(2) Yang-Mills theory [J].
Faddeev, L ;
Niemi, AJ .
PHYSICAL REVIEW LETTERS, 1999, 82 (08) :1624-1627
[7]  
FADDEEV L, HEPTH9907180
[8]  
Faddeev L. D., 1975, PRINT75QS70 IAS
[9]   DIVERGENCE-FREE FIELDS - ENERGY AND ASYMPTOTIC CROSSING NUMBER [J].
FREEDMAN, MH ;
HE, ZX .
ANNALS OF MATHEMATICS, 1991, 134 (01) :189-229
[10]   Faddeev-Hopf knots: dynamics of linked un-knots [J].
Hietarinta, J ;
Salo, P .
PHYSICS LETTERS B, 1999, 451 (1-2) :60-67