The effect of solvent polarity on the molecular surface properties and adhesion of Escherichia coli

被引:43
作者
Abu-Lail, Nehal I. [1 ]
Camesano, Terri A. [1 ]
机构
[1] Worcester Polytech Inst, Dept Chem Engn, Worcester, MA 01609 USA
基金
美国国家科学基金会;
关键词
bacterial adhesion; atomic force microscopy; solvent polarity; bacterial interaction forces; elasticity;
D O I
10.1016/j.colsurfb.2006.05.009
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The elasticity and molecular surface characteristics of Escherichia coli JM109 were investigated via atomic force microscopy (AFM) in solvents expressing different polarities. The nature of bacterial adhesion and surface characteristics was probed in formamide, water, and methanol, with dielectric constants of I 11, 80, and 3 3, respectively. Solvent polarity affected the elasticity of the bacterium, the conformation of the cell surface biopolymers, the height of the surface biopolymers, and measured adhesion forces between the bacterium and silicon nitride. By applying the Hertz model to force-indentation data, we determined that the Young's modulus was greatest in the least polar solvent, with values of 182 +/- 34.6, 12.8 +/- 0.1, and 0.8 +/- 0.3 MPa in methanol, water, and formamide, respectively. The thickness of the biopolymer brush layer on the bacterial surface was quantified using a steric model, and these values increased as polarity increased, with values of 27, 93, and 257 nm in methanol, water, and formamide, respectively. The latter results suggest that highly polar conditions favor extension of the biopolymer brush layer. Cross-sectional analysis performed on tapping mode images of the bacterial cells in methanol, water, and formamide further supported this hypothesis. The image height values are larger, since the image analysis measures the height of the bacterium and the polymer layer, but the trend with respect to solvent polarity was the same as was obtained from the steric model of the brush length. Measured adhesion forces scaled inversely with solvent polarity, with greatest adhesion observed in the least polar solvent, methanol. The combined conformational changes to the bacterial surface and biopolymer layer result in different presentations of macromolecules to a substrate surface, and therefore affect the adhesion forces between the bacterial molecules and the substrate. These results suggest that polarity of the solvent environment can be manipulated as a design parameter to control or modify the bacterial adhesion process. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 70
页数:9
相关论文
共 55 条
[1]   Role of lipopolysaccharides in the adhesion, retention, and transport of Escherichia coli JM109 [J].
Abu-Lail, NI ;
Camesano, TA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (10) :2173-2183
[2]   Role of ionic strength on the relationship of biopolymer conformation, DLVO contributions, and steric interactions to bioadhesion of Pseudomonas putida KT2442 [J].
Abu-Lail, NI ;
Camesano, TA .
BIOMACROMOLECULES, 2003, 4 (04) :1000-1012
[3]   Elasticity of Pseudomonas putida KT2442 surface polymers probed with single-molecule force microscopy [J].
Abu-Lail, NI ;
Camesano, TA .
LANGMUIR, 2002, 18 (10) :4071-4081
[4]  
ABULAIL NI, UNPUB LANGMUIR
[5]   ADSORPTION OF CHAIN MOLECULES WITH A POLAR HEAD A-SCALING DESCRIPTION [J].
ALEXANDER, S .
JOURNAL DE PHYSIQUE, 1977, 38 (08) :983-987
[6]  
ALLISON DG, 1987, J GEN MICROBIOL, V133, P1319
[7]   High-resolution atomic force microscopy studies of the Escherichia coli outer membrane:: Structural basis for permeability [J].
Amro, NA ;
Kotra, LP ;
Wadu-Mesthrige, K ;
Bulychev, A ;
Mobashery, S ;
Liu, GY .
LANGMUIR, 2000, 16 (06) :2789-2796
[8]  
[Anonymous], 1992, INTERMOLECULAR SURFA
[9]  
Barlow R.J., 1989, STAT GUIDE USE STAT
[10]   MEASURING THE NANOMECHANICAL PROPERTIES AND SURFACE FORCES OF MATERIALS USING AN ATOMIC FORCE MICROSCOPE [J].
BURNHAM, NA ;
COLTON, RJ .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1989, 7 (04) :2906-2913