Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques

被引:276
作者
Lee, Joohwi [1 ]
Seko, Atsuto [1 ,2 ,3 ]
Shitara, Kazuki [1 ,4 ]
Nakayama, Keita [1 ]
Tanaka, Isao [1 ,2 ,3 ,4 ]
机构
[1] Kyoto Univ, Dept Mat Sci & Engn, Kyoto 6068501, Japan
[2] Kyoto Univ, ESISM, Kyoto 6068501, Japan
[3] Natl Inst Mat Sci, Ctr Mat Res Informat Integrat, Tsukuba, Ibaraki 3050047, Japan
[4] Japan Fine Ceram Ctr, Nanostruct Res Lab, Nagoya, Aichi 4568587, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
REGRESSION;
D O I
10.1103/PhysRevB.93.115104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Machine learning techniques are applied to make prediction models of the G(0)W(0) band gaps for 270 inorganic compounds using Kohn-Sham (KS) band gaps, cohesive energy, crystalline volume per atom, and other fundamental information of constituent elements as predictors. Ordinary least squares regression (OLSR), least absolute shrinkage and selection operator, and nonlinear support vector regression (SVR) methods are applied with two levels of predictor sets. When the KS band gap by generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) or modified Becke-Johnson (mBJ) is used as a single predictor, the OLSR model predicts the G(0)W(0) band gap of randomly selected test data with the root-mean-square error (RMSE) of 0.59 eV. When KS band gap by PBE and mBJ methods are used together with a set of predictors representing constituent elements and compounds, the RMSE decreases significantly. The best model by SVR yields the RMSE of 0.24 eV. Band gaps estimated in this way should be useful as predictors for virtual screening of a large set of materials.
引用
收藏
页数:12
相关论文
共 46 条
  • [1] Akaike H., 1998, Selected papers of Hirotugu Akaike, P199, DOI [10.1007/978-1-4612-1694-0_15, DOI 10.1007/978-1-4612-1694-0_15]
  • [2] Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
    Bartok, Albert P.
    Payne, Mike C.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (13)
  • [3] Generalized neural-network representation of high-dimensional potential-energy surfaces
    Behler, Joerg
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [4] IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS
    BLOCHL, PE
    JEPSEN, O
    ANDERSEN, OK
    [J]. PHYSICAL REVIEW B, 1994, 49 (23): : 16223 - 16233
  • [5] Efficient Band Gap Prediction for Solids
    Chan, M. K. Y.
    Ceder, G.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (19)
  • [6] AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
    Curtarolo, Stefano
    Setyawan, Wahyu
    Wang, Shidong
    Xue, Junkai
    Yang, Kesong
    Taylor, Richard H.
    Nelson, Lance J.
    Hart, Gus L. W.
    Sanvito, Stefano
    Buongiorno-Nardelli, Marco
    Mingo, Natalio
    Levy, Ohad
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 : 227 - 235
  • [7] Informatics-aided bandgap engineering for solar materials
    Dey, Partha
    Bible, Joe
    Datta, Somnath
    Broderick, Scott
    Jasinski, Jacek
    Sunkara, Mahendra
    Menon, Madhu
    Rajan, Krishna
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2014, 83 : 185 - 195
  • [8] Faber F., 2015, ARXIV150805315
  • [9] Crystal structure representations for machine learning models of formation energies
    Faber, Felix
    Lindmaa, Alexander
    von Lilienfeld, O. Anatole
    Armiento, Rickard
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) : 1094 - 1101
  • [10] Quasiparticle band structure based on a generalized Kohn-Sham scheme
    Fuchs, F.
    Furthmueller, J.
    Bechstedt, F.
    Shishkin, M.
    Kresse, G.
    [J]. PHYSICAL REVIEW B, 2007, 76 (11)