Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants

被引:264
作者
Cordoba, Elizabeth [1 ]
Salmi, Mari [1 ]
Leon, Patricia [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Dept Biol Mol Plantas, Inst Biotechnol, Cuernavaca 62250, Morelos, Mexico
关键词
DXS enzyme; isoprenoids; MEP pathway; plastids; 1-DEOXY-D-XYLULOSE 5-PHOSPHATE SYNTHASE; METHYLERYTHRITOL PHOSPHATE-PATHWAY; NON-MEVALONATE PATHWAY; ISOPENTENYL DIPHOSPHATE ISOMERASES; ISOPRENOID BIOSYNTHESIS; ESCHERICHIA-COLI; GINKGO-BILOBA; DIFFERENTIAL EXPRESSION; CAROTENOID BIOSYNTHESIS; 4-PHOSPHATE PATHWAY;
D O I
10.1093/jxb/erp190
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The methyl-D-erythritol 4-phosphate pathway is responsible for the biosynthesis of a substantial number of natural compounds of biological and biotechnological importance. In recent years, this pathway has become an obvious target to develop new herbicides and antimicrobial drugs. In addition, the production of a variety of compounds of medical and agricultural interest may be possible through the genetic manipulation of this pathway. To this end, a complete understanding of the molecular mechanisms that regulate this pathway is of tremendous importance. Recent data have accumulated that show some of the multiple mechanisms that regulate the methyl-D-erythritol 4-phosphate pathway in plants. In this review we will describe some of these and discuss their implications. It has been demonstrated that 1-deoxy-D-xylulose-5-phosphate synthase (DXS), the first enzyme of this route, plays a major role in the overall regulation of the pathway. A small gene family codes for this enzyme in most of the plants which have been analysed so far, and the members of these gene families belong to different phylogenetic groups. Each of these genes exhibits a distinct expression pattern, suggesting unique functions. One of the most interesting regulatory mechanisms recently described for this pathway is the post-transcriptional regulation of the level of DXS and DXR proteins. In the case of DXS, this regulation appears conserved among plants, supporting its importance. The evidence accumulated suggests that this regulation might link the activity of this pathway with the plant's physiological conditions and the metabolic demand for the final products of this route.
引用
收藏
页码:2933 / 2943
页数:11
相关论文
共 70 条
[1]   Temperature-sensitive Arabidopsis mutant defective in 1-deoxy-D-xylulose 5-phosphate synthase within the plastid non-mevalonate pathway of isoprenoid biosynthesis [J].
Araki, N ;
Kusumi, K ;
Masamoto, K ;
Niwa, Y ;
Iba, K .
PHYSIOLOGIA PLANTARUM, 2000, 108 (01) :19-24
[2]   Carotenoid biotechnology in plants for nutritionally improved foods [J].
Botella-Pavía, P ;
Rodríguez-Concepción, M .
PHYSIOLOGIA PLANTARUM, 2006, 126 (03) :369-381
[3]   Regulation of carotenoid biosynthesis in plants:: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors [J].
Botella-Pavía, P ;
Besumbes, O ;
Phillips, MA ;
Carretero-Paulet, L ;
Boronat, A ;
Rodríguez-Concepción, M .
PLANT JOURNAL, 2004, 40 (02) :188-199
[4]   Biogenesis, molecular regulation and function of plant isoprenoids [J].
Bouvier, F ;
Rahier, A ;
Camara, B .
PROGRESS IN LIPID RESEARCH, 2005, 44 (06) :357-429
[5]   Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway [J].
Carretero-Paulet, L ;
Ahumada, I ;
Cunillera, N ;
Rodríguez-Concepción, M ;
Ferrer, A ;
Boronat, A ;
Campos, N .
PLANT PHYSIOLOGY, 2002, 129 (04) :1581-1591
[6]   Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase [J].
Carretero-Paulet, Lorenzo ;
Cairo, Albert ;
Botella-Pavia, Patricia ;
Besumbes, Oscar ;
Campos, Narciso ;
Boronat, Albert ;
Rodriguez-Concepcion, Manuel .
PLANT MOLECULAR BIOLOGY, 2006, 62 (4-5) :683-695
[8]   BIOCHEMISTRY AND MOLECULAR-BIOLOGY OF THE ISOPRENOID BIOSYNTHETIC-PATHWAY IN PLANTS [J].
CHAPPELL, J .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1995, 46 :521-547
[9]  
CHASAN R, 1995, PLANT CELL, V7, P1343
[10]   Vitamin synthesis in plants: Tocopherols and carotenoids [J].
DellaPenna, Dean ;
Pogson, Barry J. .
ANNUAL REVIEW OF PLANT BIOLOGY, 2006, 57 :711-738