Phosphorylation of VP30 impairs Ebola virus transcription

被引:105
作者
Modrof, J [1 ]
Mühlberger, E [1 ]
Klenk, HD [1 ]
Becker, S [1 ]
机构
[1] Univ Marburg, Inst Virol, D-35037 Marburg, Germany
关键词
D O I
10.1074/jbc.M203775200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transcription of the highly pathogenic Ebola virus (EBOV) is dependent on VP30, a constituent of the viral nucleocapsid complex. Here we present evidence that phosphorylation of VP30, which takes place at six N-terminal serine residues and one threonine residue, is of functional significance. Replacement of the phosphoserines by alanines resulted in an only slightly phosphorylated VP30 (VP30(6A)) that is still able to activate EBOV-specific transcription in a plasmid-based minigenome system. VP30(6A), however, did not bind to inclusions that are induced by the major nucleocapsid protein NP. Three intracellular phosphatases (PP1, PP2A, and PP2C) have been determined to dephosphorylate VP30. The presence of okadaic acid (OA), an inhibitor of PP1 and PP2A, had the same negative effect on transcription activation by VP30 as the substitution of the six phosphoserines for aspartate residues. OA, however, did not impair transcription when VP30 was replaced by VP30(6A). In EBOV-infected cells, OA blocked virus growth dose-dependently. The block was mediated by the extensive phosphorylation of VP30, which is evidenced by the result that expression of VP30(6A), in trans, led to the progression of EBOV infection in the presence of OA. In conclusion, phosphorylation of VP30 was shown to regulate negatively transcription activation and positively binding to the NP inclusions.
引用
收藏
页码:33099 / 33104
页数:6
相关论文
共 39 条
[1]  
[Anonymous], 2001, Wkly Epidemiol Rec, V76, P41
[2]  
BECKER S, 1992, MED MICROBIOL IMMUN, V181, P43, DOI 10.1007/BF00193395
[3]   HSP22, a new member of the small heat shock protein superfamily, interacts with mimic of phosphorylated HSP27 (3DHSP27) [J].
Benndorf, R ;
Sun, XK ;
Gilmont, RR ;
Biedermann, KJ ;
Molloy, MP ;
Goodmurphy, CW ;
Cheng, H ;
Andrews, PC ;
Welsh, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (29) :26753-26761
[4]   INHIBITORY EFFECT OF A MARINE-SPONGE TOXIN, OKADAIC ACID, ON PROTEIN PHOSPHATASES - SPECIFICITY AND KINETICS [J].
BIALOJAN, C ;
TAKAI, A .
BIOCHEMICAL JOURNAL, 1988, 256 (01) :283-290
[5]   Combinatorial control of protein phosphatase-1 [J].
Bollen, M .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (07) :426-431
[6]  
BOWEN ETW, 1977, LANCET, V1, P571
[7]   Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter [J].
Buchholz, UJ ;
Finke, S ;
Conzelmann, KK .
JOURNAL OF VIROLOGY, 1999, 73 (01) :251-259
[8]   Respiratory syncytial virus M2-1 protein requires phosphorylation for efficient function and binds viral RNA during infection [J].
Cartee, TL ;
Wertz, GW .
JOURNAL OF VIROLOGY, 2001, 75 (24) :12188-12197
[9]   OKADAIC ACID - A NEW PROBE FOR THE STUDY OF CELLULAR-REGULATION [J].
COHEN, P ;
HOLMES, CFB ;
TSUKITANI, Y .
TRENDS IN BIOCHEMICAL SCIENCES, 1990, 15 (03) :98-102
[10]   AN IMPROVED PROCEDURE FOR IDENTIFYING AND QUANTITATING PROTEIN PHOSPHATASES IN MAMMALIAN-TISSUES [J].
COHEN, P ;
KLUMPP, S ;
SCHELLING, DL .
FEBS LETTERS, 1989, 250 (02) :596-600