The discrete harmonic oscillator, Harper's equation, and the discrete fractional Fourier transform

被引:64
作者
Barker, L [1 ]
Candan, C
Hakioglu, T
Kutay, MA
Ozaktas, HM
机构
[1] Bilkent Univ, Dept Math, TR-06533 Ankara, Turkey
[2] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[3] Bilkent Univ, Dept Phys, TR-06533 Ankara, Turkey
[4] Drexel Univ, Dept Elect Engn & Comp Sci, Philadelphia, PA 19104 USA
[5] Bilkent Univ, Dept Elect Engn, TR-06533 Ankara, Turkey
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 11期
关键词
D O I
10.1088/0305-4470/33/11/304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Certain solutions to Harper's equation are discrete analogues of (and approximations to) the Hermite-Gaussian functions. They are the energy eigenfunctions of a-discrete algebraic analogue of the harmonic oscillator, and they lead to a definition of a discrete fractional Fourier transform (FT). The discrete fractional FT is essentially the time-evolution operator of the discrete harmonic oscillator.
引用
收藏
页码:2209 / 2222
页数:14
相关论文
共 35 条
[1]   THE FRACTIONAL FOURIER-TRANSFORM AND TIME-FREQUENCY REPRESENTATIONS [J].
ALMEIDA, LB .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (11) :3084-3091
[2]  
ATAKISHIEV NM, 1990, TEOR MAT FIZ, V85, P64
[3]   Fractional Fourier-Kravchuk transform [J].
Atakishiyev, NM ;
Wolf, KB .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1997, 14 (07) :1467-1477
[4]   COHERENT STATES IN FINITE QUANTUM-MECHANICS [J].
ATHANASIU, GG ;
FLORATOS, EG .
NUCLEAR PHYSICS B, 1994, 425 (1-2) :343-364
[5]   On the spectrum of a Hamilton defined on suq(2) and quantum optical models [J].
Ballesteros, A ;
Chumakov, SM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (35) :6261-6269
[6]  
BARKER L, CONTINUUM QUANTUM SY
[7]  
BARKER LJ, 2000, BUCE0007
[8]  
CANDAN C, IN PRESS IEEE T SIGN
[9]  
CANDAN C, 1999, P 1999 IEEE INT C AC, V3, P1713
[10]  
Cohen L., 1995, TIME FREQUENCY ANAL