CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis

被引:359
作者
Rowland, Owen
Zheng, Huanquan
Hepworth, Shelley R.
Lam, Patricia
Jetter, Reinhard
Kunst, Ljerka
机构
[1] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z1, Canada
[2] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada
关键词
D O I
10.1104/pp.106.086785
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
A waxy cuticle that serves as a protective barrier against uncontrolled water loss and environmental damage coats the aerial surfaces of land plants. It is composed of a cutin polymer matrix and waxes. Cuticular waxes are complex mixtures of very-long-chain fatty acids and their derivatives. We report here the molecular cloning and characterization of CER4, a wax biosynthetic gene from Arabidopsis (Arabidopsis thaliana). Arabidopsis cer4 mutants exhibit major decreases in stem primary alcohols and wax esters, and slightly elevated levels of aldehydes, alkanes, secondary alcohols, and ketones. This phenotype suggested that CER4 encoded an alcohol-forming fatty acyl-coenzyme A reductase (FAR). We identified eight FAR-like genes in Arabidopsis that are highly related to an alcohol-forming FAR expressed in seeds of jojoba (Simmondsia chinensis). Molecular characterization of CER4 alleles and genomic complementation revealed that one of these eight genes, At4g33790, encoded the FAR required for cuticular wax production. Expression of CER4 cDNA in yeast (Saccharomyces cerevisiae) resulted in the accumulation of C24: 0 and C26: 0 primary alcohols. Fully functional green fluorescent protein-tagged CER4 protein was localized to the endoplasmic reticulum in yeast cells by confocal microscopy. Analysis of gene expression by reverse transcription-PCR indicated that CER4 was expressed in leaves, stems, flowers, siliques, and roots. Expression of a beta-glucuronidase reporter gene driven by the CER4 promoter in transgenic plants was detected in epidermal cells of leaves and stems, consistent with a dedicated role for CER4 in cuticular wax biosynthesis. CER4 was also expressed in all cell types in the elongation zone of young roots. These data indicate that CER4 is an alcohol-forming FAR that has specificity for very-long-chain fatty acids and is responsible for the synthesis of primary alcohols in the epidermal cells of aerial tissues and in roots.
引用
收藏
页码:866 / 877
页数:12
相关论文
共 64 条
[1]   The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes [J].
Aarts, MGM ;
Hodge, R ;
Kalantidis, K ;
Florack, D ;
Wilson, ZA ;
Mulligan, BJ ;
Stiekema, WJ ;
Scott, R ;
Pereira, A .
PLANT JOURNAL, 1997, 12 (03) :615-623
[2]   Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility [J].
Aarts, MGM ;
Keijzer, CJ ;
Stiekema, WJ ;
Pereira, A .
PLANT CELL, 1995, 7 (12) :2115-2127
[3]   The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis [J].
Aharoni, A ;
Dixit, S ;
Jetter, R ;
Thoenes, E ;
van Arkel, G ;
Pereira, A .
PLANT CELL, 2004, 16 (09) :2463-2480
[4]   A gene expression map of the Arabidopsis root [J].
Birnbaum, K ;
Shasha, DE ;
Wang, JY ;
Jung, JW ;
Lambert, GM ;
Galbraith, DW ;
Benfey, PN .
SCIENCE, 2003, 302 (5652) :1956-1960
[5]   WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis [J].
Broun, P ;
Poindexter, P ;
Osborne, E ;
Jiang, CZ ;
Riechmann, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (13) :4706-4711
[6]   ALKANE BIOSYNTHESIS BY DECARBONYLATION OF ALDEHYDES CATALYZED BY A PARTICULATE PREPARATION FROM PISUM-SATIVUM [J].
CHEESBROUGH, TM ;
KOLATTUKUDY, PE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (21) :6613-6617
[7]   Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production [J].
Chen, XB ;
Goodwin, SM ;
Boroff, VL ;
Liu, XL ;
Jenks, MA .
PLANT CELL, 2003, 15 (05) :1170-1185
[8]   Mammalian wax biosynthesis - I. Identification of two fatty acyl-coenzyme A reductases with different substrate specificities and tissue distributions [J].
Cheng, JB ;
Russell, DW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (36) :37789-37797
[9]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[10]  
DATLA RSS, 1992, GENE, V122, P383, DOI 10.1016/0378-1119(92)90232-E