Cti6 is an Rpd3-Sin3 histone deacetylase-associated protein required for growth under iron-limiting conditions in Saccharomyces cerevisiae

被引:33
作者
Puig, S
Lau, M
Thiele, DJ [1 ]
机构
[1] Univ Michigan, Sch Med, Dept Biol Chem, Ann Arbor, MI 48109 USA
[2] Duke Univ, Med Ctr, Dept Pharmacol & Canc Biol, Sarah W Stedman Nutr & Metab Ctr, Durham, NC 27710 USA
关键词
D O I
10.1074/jbc.M313463200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Iron and copper are redox active metals essential for life. In the budding yeast Saccharomyces cerevisiae, expression of iron and copper genes involved in metal acquisition and utilization is tightly regulated at the transcriptional level. In addition iron and copper metabolism are inextricably linked because of the dependence on copper as a co-factor for iron uptake or mobilization. To further identify genes that function in iron and copper homeostasis, we screened for novel yeast mutants defective for iron limiting growth and thereby identified the CTI6 gene. Cti6 is a PHD finger-containing protein that has been shown to participate in the interaction of the Ssn6-Tup1 co-repressor with the Gcn5-containing SAGA chromatin-remodeling complex. In this report we show that CTI6 mRNA levels are increased under iron-limiting conditions, and that cti6 mutants display a growth defect under conditions of iron deprivation. Furthermore, we demonstrate that Cti6 is a nuclear protein that functionally associates with the Rpd3-Sin3 histone deacetylase complex involved in transcriptional repression. Cti6 demonstrates Rpd3-dependent transcriptional repression, and cti6 mutants exhibit an enhanced silencing of telomeric, rDNA and HMR loci, similar to mutants in genes encoding other Rpd3-Sin3-associated proteins. Microarray experiments with cti6 mutants grown under iron-limiting conditions show a down-regulation of telomeric genes and an up-regulation of Aft1 and Tup1 target genes involved in iron and oxygen regulation. Taken together, these data suggest a specific role for Cti6 in the regulation of gene expression under conditions of iron limitation.
引用
收藏
页码:30298 / 30306
页数:9
相关论文
共 62 条
[1]   THE PHD FINGER - IMPLICATIONS FOR CHROMATIN-MEDIATED TRANSCRIPTIONAL REGULATION [J].
AASLAND, R ;
GIBSON, TJ ;
STEWART, AF .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (02) :56-59
[2]  
Abramova NE, 2001, GENETICS, V157, P1169
[3]   Identification of mammalian Sds3 as an integral component of the Sin3/histone deacetylase corepressor complex [J].
Alland, L ;
David, G ;
Hong, SL ;
Potes, J ;
Muhle, R ;
Lee, HC ;
Hou, H ;
Chen, K ;
DePinho, RA .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (08) :2743-2750
[4]   THE FET3 GENE OF SACCHAROMYCES-CEREVISIAE ENCODES A MULTICOPPER OXIDASE REQUIRED FOR FERROUS IRON UPTAKE [J].
ASKWITH, C ;
EIDE, D ;
VANHO, A ;
BERNARD, PS ;
LI, LT ;
DAVISKAPLAN, S ;
SIPE, DM ;
KAPLAN, J .
CELL, 1994, 76 (02) :403-410
[5]   Genomewide studies of histone deacetylase function in yeast [J].
Bernstein, BE ;
Tong, JK ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (25) :13708-13713
[6]   Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae [J].
Bonangelino, CJ ;
Chavez, EM ;
Bonifacino, JS .
MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (07) :2486-2501
[7]   Solution structure of the PHD domain from the KAP-1 corepressor: structural determinants for PHD, RING and LIM zinc-binding domains [J].
Capili, AD ;
Schultz, DC ;
Rauscher, FJ ;
Borden, KLB .
EMBO JOURNAL, 2001, 20 (1-2) :165-177
[8]   A functional interaction between the histone deacetylase Rpd3 and the corepressor Groucho in Drosophila development [J].
Chen, GQ ;
Fernandez, J ;
Mische, S ;
Courey, AJ .
GENES & DEVELOPMENT, 1999, 13 (17) :2218-2230
[9]   MOLECULAR CHARACTERIZATION OF A COPPER TRANSPORT PROTEIN IN SACCHAROMYCES-CEREVISIAE - AN UNEXPECTED ROLE FOR COPPER IN IRON TRANSPORT [J].
DANCIS, A ;
YUAN, DS ;
HAILE, D ;
ASKWITH, C ;
EIDE, D ;
MOEHLE, C ;
KAPLAN, J ;
KLAUSNER, RD .
CELL, 1994, 76 (02) :393-402
[10]   Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo [J].
Davie, JK ;
Edmondson, DG ;
Coco, CB ;
Dent, SYR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (50) :50158-50162