Scale relativity theory for one-dimensional non-differentiable manifolds

被引:17
作者
Cresson, J
机构
[1] Equipe de Mathématiques de Besançon, CNRS-UMR 6623, Université de Franche-Comté, 25030 Besançon Cedex
关键词
D O I
10.1016/S0960-0779(01)00221-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss a rigorous foundation of the pure scale relativity theory for a one-dimensional space variable. We define several notions as "representation" of a continuous function, scale law and minimal resolution. We define precisely the meaning of a scale reference system and space reference system for non-differentiable one-dimensional manifolds. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:553 / 562
页数:10
相关论文
共 19 条
[11]   On 't Hooft dimensional regularization in E(∞) space [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2001, 12 (05) :851-858
[12]  
Greene Brian, 2003, ELEGANT UNIVERSE SUP
[13]   ONE MORE DERIVATION OF LORENTZ TRANSFORMATION [J].
LEVYLEBLOND, JM .
AMERICAN JOURNAL OF PHYSICS, 1976, 44 (03) :271-277
[14]   THE THEORY OF SCALE RELATIVITY [J].
NOTTALE, L .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (20) :4899-4936
[15]  
Nottale L, 1997, ASTRON ASTROPHYS, V327, P867
[16]  
Nottale L., 1993, FRACTAL SPACE TIME M
[17]   FRACTAL SPACE-TIME - A GEOMETRIC ANALOG OF RELATIVISTIC QUANTUM-MECHANICS [J].
ORD, GN .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (09) :1869-1884
[18]  
SIDHARTH BG, 2001, CHAOTIC UNIVERSE PLA
[19]  
TIRCOT C, 1999, COURBES DIMENSION FR