Exactly solvable model of the BCS-BEC crossover

被引:134
作者
Fuchs, JN [1 ]
Recati, A [1 ]
Zwerger, W [1 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
关键词
D O I
10.1103/PhysRevLett.93.090408
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss an integrable model of interacting fermions in one dimension that allows a complete description of the crossover from a BCS- to a Bose-like superfluid. This model bridges the Gaudin-Yang model of attractive spin 1/2 fermions to the Lieb-Liniger model of repulsive bosons. Using a geometric resonance in the one-dimensional scattering length, the inverse coupling constant varies from -infinity to +infinity while the system evolves from a BCS-like state through a Tonks-Girardeau gas to a weakly interacting Bose gas of dimers. We study the ground state energy, the elementary density and spin excitations, and the correlation functions. An experimental realization with cold atoms of such a one-dimensional BCS-BEC crossover is proposed.
引用
收藏
页码:090408 / 1
页数:4
相关论文
共 35 条
[21]   Exciting collective oscillations in a trapped 1D gas -: art. no. 250402 [J].
Moritz, H ;
Stöferle, T ;
Köhl, M ;
Esslinger, T .
PHYSICAL REVIEW LETTERS, 2003, 91 (25)
[22]   BOSE CONDENSATION IN AN ATTRACTIVE FERMION GAS - FROM WEAK TO STRONG COUPLING SUPERCONDUCTIVITY [J].
NOZIERES, P ;
SCHMITTRINK, S .
JOURNAL OF LOW TEMPERATURE PHYSICS, 1985, 59 (3-4) :195-211
[24]   Superconducting fluctuations in the Luther-Emery liquid [J].
Orignac, E ;
Poilblanc, D .
PHYSICAL REVIEW B, 2003, 68 (05)
[25]  
PETROV DS, CONDMAT0309010
[26]   BOUND-STATES, COOPER PAIRING, AND BOSE CONDENSATION IN 2 DIMENSIONS [J].
RANDERIA, M ;
DUAN, JM ;
SHIEH, LY .
PHYSICAL REVIEW LETTERS, 1989, 62 (09) :981-984
[27]  
RANDERIA M, 1995, BOSEEINSTEIN CONDENS
[28]   Creation of ultracold molecules from a Fermi gas of atoms [J].
Regal, CA ;
Ticknor, C ;
Bohn, JL ;
Jin, DS .
NATURE, 2003, 424 (6944) :47-50
[29]  
REICHEL JJ, CONDMAT0310330
[30]   CORRELATION EXPONENTS AND THE METAL-INSULATOR-TRANSITION IN THE ONE-DIMENSIONAL HUBBARD-MODEL [J].
SCHULZ, HJ .
PHYSICAL REVIEW LETTERS, 1990, 64 (23) :2831-2834