Properties of polysaccharides grafted on nanoparticles investigated by EPR

被引:37
作者
Bertholon, Isabelle
Hommel, Hubert
Labarre, Denis
Vauthier, Christine
机构
[1] Fac Pharm Chatenay Malabry, CNRS, UMR 8612, Lab Physicochim Pharmacotech Biopharm, F-92296 Chatenay Malabry, France
[2] CNRS, UMR 7615, F-75231 Paris 05, France
[3] ESPCI, F-75231 Paris 05, France
关键词
D O I
10.1021/la060570y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The in vivo fate of nanoparticles developed as drug delivery systems is influenced by the surface characteristics of the colloidal particles. In the present work, surface characteristics of a series of poly(isobutylcyanoacrylate) nanoparticles prepared by redox radical emulsion polymerization with polysaccharides of different molecular weight and nature were characterized by EPR. To this aim, a spin label was grafted on the polysaccharide chains after synthesis of the nanoparticles. The percentage of label showing fast movements was evaluated from EPR spectra which were analyzed according to the Kivelson theory. The results showed that mobility depended on temperature, type, and molecular weight of the polysaccharides. Differences between nanoparticles appeared with low-molecular-weight polysaccharides, while over a defined molecular weight which depended on the nature of the polysaccharide, the spin label behaved almost the same way in the different types of nanoparticles. Paradoxically, the percentage of fast moving label was the highest when linked to the shortest chitosan, which was the most rigid polysaccharide tested in this study. Thus, it was concluded that the apparent mobility of the polysaccharide evaluated by the EPR method depended on the capacity of the polysaccharide chains to fold making possible hydrophobic interactions between the label and the nanoparticle core. The transition between the unfolded-folded regiment depended on the molecular weight and on the nature of the polysaccharide. Results of this study may be useful to improve the understanding of the nanoparticle interactions with blood proteins and complement which in turn influence the in vivo fate of nanoparticles used as drug delivery systems.
引用
收藏
页码:5485 / 5490
页数:6
相关论文
共 36 条
[1]   STEALTH ME.PEG-PLA NANOPARTICLES AVOID UPTAKE BY THE MONONUCLEAR PHAGOCYTES SYSTEM [J].
BAZILE, D ;
PRUDHOMME, C ;
BASSOULLET, MT ;
MARLARD, M ;
SPENLEHAUER, G ;
VEILLARD, M .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1995, 84 (04) :493-498
[2]  
BERTHOLON I, 2006, IN PRESS MACROMOLECU
[3]   Influence of the initiator system, cerium-polysaccharide, on the surface properties of poly(isobutylcyanoacrylate) nanoparticles [J].
Bertholon-Rajot, I ;
Labarre, D ;
Vauthier, C .
POLYMER, 2005, 46 (04) :1407-1415
[4]   Nanoparticles in cancer therapy and diagnosis [J].
Brigger, I ;
Dubernet, C ;
Couvreur, P .
ADVANCED DRUG DELIVERY REVIEWS, 2002, 54 (05) :631-651
[5]   Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery [J].
Calvo, P ;
Gouritin, B ;
Chacun, H ;
Desmaële, D ;
D'Angelo, J ;
Noel, JP ;
Georgin, D ;
Fattal, E ;
Andreux, JP ;
Couvreur, P .
PHARMACEUTICAL RESEARCH, 2001, 18 (08) :1157-1166
[6]   Evaluation of the surface properties of dextran-coated poly(isobutylcyanoacrylate) nanoparticles by spin-labelling coupled with electron resonance spectroscopy [J].
Chauvierre, C ;
Vauthier, C ;
Labarre, D ;
Hommel, H .
COLLOID AND POLYMER SCIENCE, 2004, 282 (09) :1016-1025
[7]   Novel polysaccharide-decorated poly(isobutyl cyanoacrylate) nanoparticles [J].
Chauvierre, C ;
Labarre, D ;
Couvreur, P ;
Vauthier, C .
PHARMACEUTICAL RESEARCH, 2003, 20 (11) :1786-1793
[8]   Radical emulsion polymerization of alkylcyanoacrylates initiated by the redox system dextran-cerium(IV) under acidic aqueous conditions [J].
Chauvierre, C ;
Labarre, D ;
Couvreur, P ;
Vauthier, C .
MACROMOLECULES, 2003, 36 (16) :6018-6027
[9]   MICROSPHERES FOR TARGETING DRUGS TO SPECIFIC BODY SITES [J].
DAVIS, SS ;
ILLUM, L ;
MOGHIMI, SM ;
DAVIES, MC ;
PORTER, CJH ;
MUIR, IS ;
BRINDLEY, A ;
CHRISTY, NM ;
NORMAN, ME ;
WILLIAMS, P ;
DUNN, SE .
JOURNAL OF CONTROLLED RELEASE, 1993, 24 (1-3) :157-163
[10]  
DOUGLAS S J, 1986, Journal of Controlled Release, V3, P15, DOI 10.1016/0168-3659(86)90060-X