Critical hysteresis from random anisotropy

被引:6
作者
da Silveira, RA [1 ]
Zapperi, S
机构
[1] Harvard Univ, Lyman Lab Phys, Cambridge, MA 02138 USA
[2] Univ Roma La Sapienza, INFM, UdR Roma 1, I-00185 Rome, Italy
[3] Univ Roma La Sapienza, Dipartimento Fis, SMC, I-00185 Rome, Italy
来源
PHYSICAL REVIEW B | 2004年 / 69卷 / 21期
关键词
D O I
10.1103/PhysRevB.69.212404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Critical hysteresis in ferromagnets is investigated through a N-component spin model with random anisotropies, more prevalent experimentally than the random fields used in most theoretical studies. Metastability, and the tensorial nature of anisotropy, dictate its physics. Generically, random-field Ising criticality occurs, but other universality classes exist. In particular, proximity to O(N) criticality may explain the discrepancy between experiment and earlier theories. The uniaxial anisotropy constant, which can be controlled in magnetostrictive materials by an applied stress, emerges as a natural tuning parameter.
引用
收藏
页码:212404 / 1
页数:4
相关论文
共 29 条
[11]   XY CHAIN WITH RANDOM ANISOTROPY - MAGNETIZATION LAW, SUSCEPTIBILITY, AND CORRELATION-FUNCTIONS AT T = O [J].
DICKMAN, R ;
CHUDNOVSKY, EM .
PHYSICAL REVIEW B, 1991, 44 (09) :4397-4405
[12]   XY-MODEL WITH WEAK RANDOM ANISOTROPY IN A SYMMETRY-BREAKING MAGNETIC-FIELD [J].
DIENY, B ;
BARBARA, B .
PHYSICAL REVIEW B, 1990, 41 (16) :11549-11556
[13]   Scaling exponents for Barkhausen avalanches in polycrystalline and amorphous ferromagnets [J].
Durin, G ;
Zapperi, S .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4705-4708
[14]   Quasi-long-range order in the random anisotropy Heisenberg model:: Functional renormalization group in 4-ε dimensions [J].
Feldman, DE .
PHYSICAL REVIEW B, 2000, 61 (01) :382-390
[15]   Quasi-long-range order in nematics confined in random porous media [J].
Feldman, DE .
PHYSICAL REVIEW LETTERS, 2000, 84 (21) :4886-4889
[16]   Quasi-long-range order in random-anisotropy Heisenberg models [J].
Fisch, R .
PHYSICAL REVIEW B, 1998, 58 (09) :5684-5691
[17]   RANDOM-FIELDS, RANDOM ANISOTROPIES, NONLINEAR SIGMA-MODELS, AND DIMENSIONAL REDUCTION [J].
FISHER, DS .
PHYSICAL REVIEW B, 1985, 31 (11) :7233-7251
[18]   A SANS STUDY OF THE MAGNETIC PHASE-TRANSITION IN AMORPHOUS (FEXNI1-X)78B10SI12 [J].
HANNON, AC ;
HAGEN, M ;
COWLEY, RA ;
STANLEY, HB ;
COWLAM, N .
PHYSICA B, 1992, 180 :230-232
[19]   NEW MODEL FOR AMORPHOUS MAGNETISM [J].
HARRIS, R ;
PLISCHKE, M ;
ZUCKERMANN, MJ .
PHYSICAL REVIEW LETTERS, 1973, 31 (03) :160-162
[20]   Frozen quasi-long-range order in the random anisotropy Heisenberg magnet [J].
Itakura, M .
PHYSICAL REVIEW B, 2003, 68 (10)