Probabilistic flood extent estimates from social media flood observations

被引:54
作者
Brouwer, Tom [1 ,2 ]
Eilander, Dirk [1 ]
van Loenen, Arnejan [1 ]
Booij, Martijn J. [2 ]
Wijnberg, Kathelijne M. [2 ]
Verkade, Jan S. [1 ]
Wagemaker, Jurjen [3 ]
机构
[1] Deltares, Boussinesqweg 1, NL-2629 HV Delft, Netherlands
[2] Univ Twente, Dept Water Engn & Management, Drienerlolaan 5, NL-7522 NB Enschede, Netherlands
[3] FloodTags, Binckhorstlaan 36, NL-2511 BE The Hague, Netherlands
关键词
UNCERTAINTY; INFORMATION; ELEVATION; ERROR; MODEL; DEM;
D O I
10.5194/nhess-17-735-2017
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The increasing number and severity of floods, driven by phenomena such as urbanization, deforestation, subsidence and climate change, create a growing need for accurate and timely flood maps. In this paper we present and evaluate a method to create deterministic and probabilistic flood maps from Twitter messages that mention locations of flooding. A deterministic flood map created for the December 2015 flood in the city of York (UK) showed good performance (F-(2) = 0.69; a statistic ranging from 0 to 1, with 1 expressing a perfect fit with validation data). The probabilistic flood maps we created showed that, in the York case study, the uncertainty in flood extent was mainly induced by errors in the precise locations of flood observations as derived from Twitter data. Errors in the terrain elevation data or in the parameters of the applied algorithm contributed less to flood extent uncertainty. Although these maps tended to overestimate the actual probability of flooding, they gave a reasonable representation of flood extent uncertainty in the area. This study illustrates that inherently uncertain data from social media can be used to derive information about flooding.
引用
收藏
页码:735 / 747
页数:13
相关论文
共 35 条
[21]   Location Inference of Social Media Posts at Hyper-Local Scale [J].
McClanahan, Brian ;
Gokhale, Swapna S. .
2015 3RD INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD (FICLOUD) AND INTERNATIONAL CONFERENCE ON OPEN AND BIG (OBD), 2015, :465-472
[22]  
Mudron I., 2013, GEOSCI ENG, V5, P25
[23]   Height Above the Nearest Drainage - a hydrologically relevant new terrain model [J].
Nobre, A. D. ;
Cuartas, L. A. ;
Hodnett, M. ;
Renno, C. D. ;
Rodrigues, G. ;
Silveira, A. ;
Waterloo, M. ;
Saleska, S. .
JOURNAL OF HYDROLOGY, 2011, 404 (1-2) :13-29
[24]   HAND contour: a new proxy predictor of inundation extent [J].
Nobre, Antonio Donato ;
Cuartas, Luz Adriana ;
Momo, Marcos Rodrigo ;
Severo, Dirceu Luis ;
Pinheiro, Adilson ;
Nobre, Carlos Afonso .
HYDROLOGICAL PROCESSES, 2016, 30 (02) :320-333
[25]  
Pidd H., 2016, YEAR DELUGE YORK IS
[26]   The effect of error in gridded digital elevation models on the estimation of topographic parameters [J].
Raaflaub, Lynn D. ;
Collins, Michael J. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2006, 21 (05) :710-732
[27]   HAND, a new terrain descriptor using SRTM-DEM:: Mapping terra-firme rainforest environments in Amazonia [J].
Renno, Camilo Daleles ;
Nobre, Antonio Donato ;
Cuartas, Luz Adriana ;
Soares, Joao Vianei ;
Hodnett, Martin G. ;
Tomasella, Javier ;
Waterloo, Maarten J. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (09) :3469-3481
[28]   Real Time Estimation of the Calgary Floods Using Limited Remote Sensing Data [J].
Schnebele, Emily ;
Cervone, Guido ;
Kumar, Shamanth ;
Waters, Nigel .
WATER, 2014, 6 (02) :381-398
[29]   PROGRESS IN INTEGRATION OF REMOTE SENSING-DERIVED FLOOD EXTENT AND STAGE DATA AND HYDRAULIC MODELS [J].
Schumann, Guy ;
Bates, Paul D. ;
Horritt, Matthew S. ;
Matgen, Patrick ;
Pappenberger, Florian .
REVIEWS OF GEOPHYSICS, 2009, 47
[30]   Assessing the utility of social media as a data source for flood risk management using a real-time modelling framework [J].
Smith, L. ;
Liang, Q. ;
James, P. ;
Lin, W. .
JOURNAL OF FLOOD RISK MANAGEMENT, 2017, 10 (03) :370-380