On clusterings: Good, bad and spectral

被引:435
作者
Kannan, R [1 ]
Vempala, S
Vetta, A
机构
[1] Yale Univ, Dept Comp Sci, New Haven, CT 06511 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
algorithms; theory; clustering; graph algorithms; spectral methods;
D O I
10.1145/990308.990313
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We motivate and develop a natural bicriteria measure for assessing the quality of a clustering that avoids the drawbacks of existing measures. A simple recursive heuristic is shown to have poly-logarithmic worst-case guarantees under the new measure. The main result of the article is the analysis of a popular spectral algorithm. One variant of spectral clustering turns out to have effective worst-case guarantees; another finds a "good" clustering, if one exists.
引用
收藏
页码:497 / 515
页数:19
相关论文
共 19 条
[1]   Spectral partitioning with multiple eigenvectors [J].
Alpert, CJ ;
Kahng, AB ;
Yao, SZ .
DISCRETE APPLIED MATHEMATICS, 1999, 90 (1-3) :3-26
[2]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[3]  
[Anonymous], MITLCSTR906
[4]  
Azar Y., 2001, P 33 ANN ACM S THEOR, P619, DOI [10.1145/380752.380859, DOI 10.1145/380752.380859]
[5]  
Benczur A. A., 1996, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, P47, DOI 10.1145/237814.237827
[6]  
Charikar M., 1999, Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, P1, DOI 10.1145/301250.301257
[7]  
CHARIKAR M, 1997, P 29 ANN ACM S THEOR, P626, DOI DOI 10.1145/258533.258657
[8]  
DHILLON I, 2001, P 7 ACM C KNOWL DISC
[9]  
Drineas P, 1999, PROCEEDINGS OF THE TENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P291
[10]   A SIMPLE HEURISTIC FOR THE P-CENTER PROBLEM [J].
DYER, ME ;
FRIEZE, AM .
OPERATIONS RESEARCH LETTERS, 1985, 3 (06) :285-288