On clusterings: Good, bad and spectral

被引:435
作者
Kannan, R [1 ]
Vempala, S
Vetta, A
机构
[1] Yale Univ, Dept Comp Sci, New Haven, CT 06511 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
algorithms; theory; clustering; graph algorithms; spectral methods;
D O I
10.1145/990308.990313
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We motivate and develop a natural bicriteria measure for assessing the quality of a clustering that avoids the drawbacks of existing measures. A simple recursive heuristic is shown to have poly-logarithmic worst-case guarantees under the new measure. The main result of the article is the analysis of a popular spectral algorithm. One variant of spectral clustering turns out to have effective worst-case guarantees; another finds a "good" clustering, if one exists.
引用
收藏
页码:497 / 515
页数:19
相关论文
共 19 条
[11]   Fast Monte-Carlo algorithms for finding low-rank approximations [J].
Frieze, A ;
Kannan, R ;
Vempala, S .
39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, :370-378
[12]  
Indyk P., 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039), P154, DOI 10.1109/SFFCS.1999.814587
[13]   Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation [J].
Jain, K ;
Vazirani, VV .
JOURNAL OF THE ACM, 2001, 48 (02) :274-296
[14]   Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms [J].
Leighton, T ;
Rao, S .
JOURNAL OF THE ACM, 1999, 46 (06) :787-832
[15]   Latent semantic indexing: A probabilistic analysis [J].
Papadimitriou, CH ;
Raghavan, P ;
Tamaki, H ;
Vempala, S .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2000, 61 (02) :217-235
[16]   Normalized cuts and image segmentation [J].
Shi, JB ;
Malik, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (08) :888-905
[17]   APPROXIMATE COUNTING, UNIFORM GENERATION AND RAPIDLY MIXING MARKOV-CHAINS [J].
SINCLAIR, A ;
JERRUM, M .
INFORMATION AND COMPUTATION, 1989, 82 (01) :93-133
[18]   ERROR AND PERTURBATION BOUNDS FOR SUBSPACES ASSOCIATED WITH CERTAIN EIGENVALUE PROBLEMS [J].
STEWART, GW .
SIAM REVIEW, 1973, 15 (04) :727-764
[19]  
Weiss Y., 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision, P975, DOI 10.1109/ICCV.1999.790354