Automatic anatomical brain MRI segmentation combining label propagation and decision fusion

被引:695
作者
Heckemann, Rolf A.
Hajnal, Joseph V.
Aljabar, Paul
Rueckert, Daniel
Hammers, Alexander
机构
[1] Univ London Imperial Coll Sci Technol & Med, MRC Clin Sci Ctr, Imaging Sci Dept, London W12 0HS, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London W12 0HS, England
[3] Univ London Imperial Coll Sci Technol & Med, MRC Clin Sci Ctr, Div Neurosci & Mental Hlth, London W12 0HS, England
基金
英国医学研究理事会; 英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.neuroimage.2006.05.061
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Regions in three-dimensional magnetic resonance (MR) brain images can be classified using protocols for manually segmenting and labeling structures. For large cohorts, time and expertise requirements make this approach impractical. To achieve automation, an individual segmentation can be propagated to another individual using an anatomical correspondence estimate relating the atlas image to the target image. The accuracy of the resulting target labeling has been limited but can potentially be improved by combining multiple segmentations using decision fusion. We studied segmentation propagation and decision fusion on 30 normal brain MR images, which had been manually segmented into 67 structures. Correspondence estimates were established by nonrigid registration using free-form deformations. Both direct label propagation and an indirect approach were tested. Individual propagations showed an average similarity index (SI) of 0.754 +/- 0.016 against manual segmentations. Decision fusion using 29 input segmentations increased SI to 0.836 +/- 0.009. For indirect propagation of a single source via 27 intermediate images, SI was 0.779 +/- 0.013. We also studied the effect of the decision fusion procedure using a numerical simulation with synthetic input data. The results helped to formulate a model that predicts the quality improvement of fused brain segmentations based on the number of individual propagated segmentations combined. We demonstrate a practicable procedure that exceeds the accuracy of previous automatic methods and can compete with manual delineations. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:115 / 126
页数:12
相关论文
共 23 条
[1]   Automatic segmentation of thalamus from brain MRI integrating fuzzy clustering and dynamic contours [J].
Amini, L ;
Soltanian-Zadeh, H ;
Lucas, C ;
Gity, M .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (05) :800-811
[2]   Automatic segmentation of subcortical brain structures in MR images using information fusion [J].
Barra, V ;
Boire, JY .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (07) :549-558
[3]   Atlas-based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment [J].
Carmichael, OT ;
Aizenstein, HA ;
Davis, SW ;
Becker, JT ;
Thompson, PM ;
Meltzer, CC ;
Liu, YX .
NEUROIMAGE, 2005, 27 (04) :979-990
[4]   AUTOMATIC 3D INTERSUBJECT REGISTRATION OF MR VOLUMETRIC DATA IN STANDARDIZED TALAIRACH SPACE [J].
COLLINS, DL ;
NEELIN, P ;
PETERS, TM ;
EVANS, AC .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1994, 18 (02) :192-205
[5]   Automatically parcellating the human cerebral cortex [J].
Fischl, B ;
van der Kouwe, A ;
Destrieux, C ;
Halgren, E ;
Ségonne, F ;
Salat, DH ;
Busa, E ;
Seidman, LJ ;
Goldstein, J ;
Kennedy, D ;
Caviness, V ;
Makris, N ;
Rosen, B ;
Dale, AM .
CEREBRAL CORTEX, 2004, 14 (01) :11-22
[6]   Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain [J].
Fischl, B ;
Salat, DH ;
Busa, E ;
Albert, M ;
Dieterich, M ;
Haselgrove, C ;
van der Kouwe, A ;
Killiany, R ;
Kennedy, D ;
Klaveness, S ;
Montillo, A ;
Makris, N ;
Rosen, B ;
Dale, AM .
NEURON, 2002, 33 (03) :341-355
[7]   Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe [J].
Hammers, A ;
Allom, R ;
Koepp, MJ ;
Free, SL ;
Myers, R ;
Lemieux, L ;
Mitchell, TN ;
Brooks, DJ ;
Duncan, JS .
HUMAN BRAIN MAPPING, 2003, 19 (04) :224-247
[8]   An automated registration algorithm for measuring MRI subcortical brain structures [J].
Iosifescu, DV ;
Shenton, ME ;
Warfield, SK ;
Kikinis, R ;
Dengler, J ;
Jolesz, FA ;
McCarley, RW .
NEUROIMAGE, 1997, 6 (01) :13-25
[9]   On combining classifiers [J].
Kittler, J ;
Hatef, M ;
Duin, RPW ;
Matas, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (03) :226-239
[10]   Mindboggle: a scatterbrained approach to automate brain labeling [J].
Klein, A ;
Hirsch, J .
NEUROIMAGE, 2005, 24 (02) :261-280