Strong formulations of robust mixed 0-1 programming

被引:40
作者
Atamtuerk, Alper [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
robust optimization; polyhedra; modeling; computation;
D O I
10.1007/s10107-006-0709-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce strong formulations for robust mixed 0-1 programming with uncertain objective coefficients. We focus on a polytopic uncertainty set described by a ``budget constraint'' for allowed uncertainty in the objective coefficients. We show that for a robust 0-1 problem, there is an alpha-tight linear programming formulation with size polynomial in the size of an alpha-tight linear programming formulation for the nominal 0-1 problem. We give extensions to robust mixed 0-1 programming and present computational experiments with the proposed formulations.
引用
收藏
页码:235 / 250
页数:16
相关论文
共 20 条
  • [1] ATAMTURK A, 2004, BCOL0403 U CAL BERKL
  • [2] On the complexity of a class of combinatorial optimization problems with uncertainty
    Averbakh, I
    [J]. MATHEMATICAL PROGRAMMING, 2001, 90 (02) : 263 - 272
  • [3] Balas Egon., 1979, ANN OFDISCRETE MATH, V5, P3, DOI DOI 10.1016/S0167-5060(08)70342-X
  • [4] Robust convex optimization
    Ben-Tal, A
    Nemirovski, A
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (04) : 769 - 805
  • [5] Adjustable robust solutions of uncertain linear programs
    Ben-Tal, A
    Goryashko, A
    Guslitzer, E
    Nemirovski, A
    [J]. MATHEMATICAL PROGRAMMING, 2004, 99 (02) : 351 - 376
  • [6] Robust solutions of uncertain quadratic and conic-quadratic problems
    Ben-Tal, A
    Nemirovski, A
    Roos, C
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (02) : 535 - 560
  • [7] Bertsimas D, 2004, LECT NOTES COMPUT SC, V3064, P86
  • [8] Robust linear optimization under general norms
    Bertsimas, D
    Pachamanova, D
    Sim, M
    [J]. OPERATIONS RESEARCH LETTERS, 2004, 32 (06) : 510 - 516
  • [9] Robust discrete optimization and network flows
    Bertsimas, D
    Sim, M
    [J]. MATHEMATICAL PROGRAMMING, 2003, 98 (1-3) : 49 - 71
  • [10] BERTSIMAS D, 2004, ROBUST CONIC OPTIMIZ