Entanglement monotone derived from Grover's algorithm

被引:65
作者
Biham, O [1 ]
Nielsen, MA
Osborne, TJ
机构
[1] Univ Queensland, Ctr Quantum Comp Technol, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Dept Phys, Brisbane, Qld 4072, Australia
[3] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[4] Univ Calif Santa Barbara, Inst Theoret Phys, Santa Barbara, CA 93106 USA
关键词
Algorithms - Fourier transforms - Matrix algebra - Physical properties - Probability - Problem solving - Search engines;
D O I
10.1103/PhysRevA.65.062312
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper demonstrates that how well a state performs as an input to Grover's search algorithm depends critically upon the entanglement present in that state; the more the entanglement, the less well the algorithm performs. More precisely, suppose we take a pure state input, and prior to running the algorithm apply local unitary operations to each qubit in order to maximize the probability P-max that the search algorithm succeeds. We prove that, for pure states, P-max is an entanglement monotone, in the sense that P-max can never be decreased by local operations and classical communication.
引用
收藏
页码:623121 / 623127
页数:7
相关论文
共 29 条
[11]  
Grover L. K., 1996, 28 ANN ACM S THEOR C, P212
[12]   Quantum mechanics helps in searching for a needle in a haystack [J].
Grover, LK .
PHYSICAL REVIEW LETTERS, 1997, 79 (02) :325-328
[13]   FIDELITY FOR MIXED QUANTUM STATES [J].
JOZSA, R .
JOURNAL OF MODERN OPTICS, 1994, 41 (12) :2315-2323
[14]  
LATORRE JI, QUANTPH0111146
[15]  
MEYER DA, QUANTPH0108104
[16]   Geometric strategy for the optimal quantum search [J].
Miyake, A ;
Wadati, M .
PHYSICAL REVIEW A, 2001, 64 (04) :9
[17]   Conditions for a class of entanglement transformations [J].
Nielsen, MA .
PHYSICAL REVIEW LETTERS, 1999, 83 (02) :436-439
[18]  
Nielsen MA., 2000, QUANTUM COMPUTATION
[19]   Thermodynamics and the measure of entanglement [J].
Popescu, S ;
Rohrlich, D .
PHYSICAL REVIEW A, 1997, 56 (05) :R3319-R3321
[20]  
PRESKILL J, 1998, PHYSICS 229 ADV MATH