A column pre-ordering strategy for the unsymmetric-pattern multifrontal method

被引:254
作者
Davis, TA [1 ]
机构
[1] Univ Florida, Comp & Informat Sci & Engn Dept, Gainesville, FL 32611 USA
[2] Stanford Univ, Stanford, CA 94305 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 2004年 / 30卷 / 02期
关键词
algorithms; experimentation; performance; sparse nonsymmetric matrices; linear equations; multifrontal method; ordering methods;
D O I
10.1145/992200.992205
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A new method for sparse LU factorization is presented that combines a column pre-ordering strategy with a right-looking unsymmetric-pattern multifrontal numerical factorization. The column ordering is selected to give a good a priori upper bound on fill-in and then refined during numerical factorization ( while preserving the bound). Pivot rows are selected to maintain numerical stability and to preserve sparsity. The method analyzes the matrix and automatically selects one of three pre-ordering and pivoting strategies. The number of nonzeros in the LU factors computed by the method is typically less than or equal to those found by a wide range of unsymmetric sparse LU factorization methods, including left-looking methods and prior multifrontal methods.
引用
收藏
页码:165 / 195
页数:31
相关论文
共 58 条
[31]  
DUFF IS, 1977, J I MATH APPL, V19, P339
[32]   The design of MA48: A code for the direct solution of sparse unsymmetric linear systems of equations [J].
Duff, IS ;
Reid, JK .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (02) :187-226
[33]  
Duff IS, 1986, DIRECT METHODS SPARS
[34]  
DUFF IS, 2002, TR2002024
[35]   EXPLOITING STRUCTURAL SYMMETRY IN UNSYMMETRIC SPARSE SYMBOLIC FACTORIZATION [J].
EISENSTAT, SC ;
LIU, JWH .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (01) :202-211
[36]   SYMBOLIC FACTORIZATION FOR SPARSE GAUSSIAN-ELIMINATION WITH PARTIAL PIVOTING [J].
GEORGE, A ;
NG, E .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (06) :877-898
[37]   THE EVOLUTION OF THE MINIMUM DEGREE ORDERING ALGORITHM [J].
GEORGE, A ;
LIU, JWH .
SIAM REVIEW, 1989, 31 (01) :1-19
[38]   AN IMPLEMENTATION OF GAUSSIAN-ELIMINATION WITH PARTIAL PIVOTING FOR SPARSE SYSTEMS [J].
GEORGE, A ;
NG, E .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (02) :390-409
[39]  
GEORGE A, 1981, COMPUTER SOLUTION LA
[40]   Computing row and column counts for sparse QR and LU factorization [J].
Gilbert, JR ;
Li, XS ;
Ng, EG ;
Peyton, BW .
BIT, 2001, 41 (04) :693-710