Geometric pattern matching under Euclidean motion

被引:65
作者
Chew, LP
Goodrich, MT
Huttenlocher, DP
Kedem, K
Kleinberg, JM
Kravets, D
机构
[1] CORNELL UNIV,DEPT COMP SCI,ITHACA,NY 14853
[2] JOHNS HOPKINS UNIV,DEPT COMP SCI,BALTIMORE,MD 21218
[3] BEN GURION UNIV NEGEV,DEPT MATH & COMP SCI,IL-84105 BEER SHEVA,ISRAEL
[4] NEW JERSEY INST TECHNOL,DEPT COMP SCI,NEWARK,NJ 07102
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 1997年 / 7卷 / 1-2期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0925-7721(95)00047-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given two planar sets A and B, we examine the problem of determining the smallest epsilon such that there is a Euclidean motion (rotation and translation) of A that brings each member of A within distance epsilon of some member of B. We establish upper bounds on the combinatorial complexity of this subproblem in model-based computer vision, when the sets A and B contain points, line segments, or (filled-in) polygons. We also show how to use our methods to substantially improve on existing algorithms for finding the minimum Hausdorff distance under Euclidean motion.
引用
收藏
页码:113 / 124
页数:12
相关论文
共 27 条
  • [1] CONGRUENCE, SIMILARITY, AND SYMMETRIES OF GEOMETRIC OBJECTS
    ALT, H
    MEHLHORN, K
    WAGENER, H
    WELZL, E
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (03) : 237 - 256
  • [2] AONUMA H, 1990, 6TH P ACM S COMP GEO, P225
  • [3] Arkin E. M., 1992, ORSA Journal on Computing, V4, P375, DOI 10.1287/ijoc.4.4.375
  • [4] AN EFFICIENTLY COMPUTABLE METRIC FOR COMPARING POLYGONAL SHAPES
    ARKIN, EM
    CHEW, LP
    HUTTENLOCHER, DP
    KEDEM, K
    MITCHELL, JSB
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (03) : 209 - 216
  • [5] AVNAIM F, 1988, LECT NOTES COMPUTER, V294, P322
  • [6] TRIANGULATING A SIMPLE POLYGON IN LINEAR TIME
    CHAZELLE, B
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) : 485 - 524
  • [7] CHAZELLE B, 1992, 8TH P ACM S COMP GEO, P120
  • [8] CHEW LP, 1992, LECT NOTES COMPUT SC, V621, P318
  • [9] AN OPTIMAL-TIME ALGORITHM FOR SLOPE SELECTION
    COLE, R
    SALOWE, JS
    STEIGER, WL
    SZEMEREDI, E
    [J]. SIAM JOURNAL ON COMPUTING, 1989, 18 (04) : 792 - 810
  • [10] PARALLEL MERGE SORT
    COLE, R
    [J]. SIAM JOURNAL ON COMPUTING, 1988, 17 (04) : 770 - 785