Geometric pattern matching under Euclidean motion

被引:65
作者
Chew, LP
Goodrich, MT
Huttenlocher, DP
Kedem, K
Kleinberg, JM
Kravets, D
机构
[1] CORNELL UNIV,DEPT COMP SCI,ITHACA,NY 14853
[2] JOHNS HOPKINS UNIV,DEPT COMP SCI,BALTIMORE,MD 21218
[3] BEN GURION UNIV NEGEV,DEPT MATH & COMP SCI,IL-84105 BEER SHEVA,ISRAEL
[4] NEW JERSEY INST TECHNOL,DEPT COMP SCI,NEWARK,NJ 07102
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 1997年 / 7卷 / 1-2期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0925-7721(95)00047-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given two planar sets A and B, we examine the problem of determining the smallest epsilon such that there is a Euclidean motion (rotation and translation) of A that brings each member of A within distance epsilon of some member of B. We establish upper bounds on the combinatorial complexity of this subproblem in model-based computer vision, when the sets A and B contain points, line segments, or (filled-in) polygons. We also show how to use our methods to substantially improve on existing algorithms for finding the minimum Hausdorff distance under Euclidean motion.
引用
收藏
页码:113 / 124
页数:12
相关论文
共 27 条