Size of outbreaks near the epidemic threshold

被引:42
作者
Ben-Naim, E [1 ]
Krapivsky, PL
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Boston Univ, Ctr Biodynam, Boston, MA 02215 USA
[4] Boston Univ, Dept Phys, Boston, MA 02215 USA
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 05期
关键词
D O I
10.1103/PhysRevE.69.050901
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The spread of infectious diseases near the epidemic threshold is investigated. Scaling laws for the size and the duration of outbreaks originating from a single infected individual in a large susceptible population are obtained. The maximal size of an outbreak n(*) scales as N-2/3 with N the population size. This scaling law implies that the average outbreak size <n> scales as N-1/3. Moreover, the maximal and the average duration of an outbreak grow as t(*)similar toN(1/3) and <t>similar toln N, respectively.
引用
收藏
页数:4
相关论文
共 24 条
  • [1] ANDERSON R M, 1991
  • [2] A threshold limit theorem for the stochastic logistic epidemic
    Andersson, H
    Djehiche, B
    [J]. JOURNAL OF APPLIED PROBABILITY, 1998, 35 (03) : 662 - 670
  • [3] Andersson H., 1998, J APPL PROBAB, V34, P698
  • [4] [Anonymous], 1989, THEORY BRANCHING PRO
  • [5] The role of evolution in the emergence of infectious diseases
    Antia, R
    Regoes, RR
    Koella, JC
    Bergstrom, CT
    [J]. NATURE, 2003, 426 (6967) : 658 - 661
  • [6] Bailey N, 1975, MATH THEORY INFECT D
  • [7] THE FINAL SIZE AND SEVERITY OF A GENERALIZED STOCHASTIC MULTITYPE EPIDEMIC MODEL
    BALL, F
    CLANCY, D
    [J]. ADVANCES IN APPLIED PROBABILITY, 1993, 25 (04) : 721 - 736
  • [8] Exchange-driven growth
    Ben-Naim, E
    Krapivsky, PL
    [J]. PHYSICAL REVIEW E, 2003, 68 (03): : 9
  • [9] BENNAIM E, UNPUB
  • [10] Virus evolution: Epidemics-in-waiting
    Bull, J
    Dykhuizen, D
    [J]. NATURE, 2003, 426 (6967) : 609 - 610