Minimal metabolic pathway structure is consistent with associated biomolecular interactions

被引:34
作者
Bordbar, Aarash [1 ]
Nagarajan, Harish [2 ]
Lewis, Nathan E. [1 ,3 ,4 ,5 ]
Latif, Haythem [1 ]
Ebrahim, Ali [1 ]
Federowicz, Stephen [2 ]
Schellenberger, Jan [2 ]
Palsson, Bernhard O. [1 ,2 ,6 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Bioinformat & Syst Biol Program, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Sch Med, Dept Pediat, La Jolla, CA 92093 USA
[4] Harvard Univ, Sch Med, Wyss Inst Biol Inspired Engn, Boston, MA USA
[5] Harvard Univ, Sch Med, Dept Genet, Boston, MA USA
[6] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, DK-2800 Lyngby, Denmark
基金
美国国家科学基金会;
关键词
constraint-based modeling; genetic interactions; pathway analysis; protein-protein interactions; transcriptional regulatory networks; FUNCTIONAL-CHARACTERIZATION; EXTREME PATHWAYS; GENE ONTOLOGY; RECONSTRUCTION; NETWORKS; DATABASE; MODELS;
D O I
10.15252/msb.20145243
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high-throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human-defined pathways. Here, we introduce an unbiased, pathway structure for genome-scale metabolic networks defined based on principles of parsimony that do not mimic canonical human-defined textbook pathways. Instead, these minimal pathways better describe multiple independent pathway-associated biomolecular interaction datasets suggesting a functional organization for metabolism based on parsimonious use of cellular components. We use the inherent predictive capability of these pathways to experimentally discover novel transcriptional regulatory interactions in Escherichia coli metabolism for three transcription factors, effectively doubling the known regulatory roles for Nac and MntR. This study suggests an underlying and fundamental principle in the evolutionary selection of pathway structures; namely, that pathways may be minimal, independent, and segregated.
引用
收藏
页数:16
相关论文
共 57 条
[1]   Systems-Level Metabolic Flux Profiling Elucidates a Complete, Bifurcated Tricarboxylic Acid Cycle in Clostridium acetobutylicum [J].
Amador-Noguez, Daniel ;
Feng, Xiao-Jiang ;
Fan, Jing ;
Roquet, Nathaniel ;
Rabitz, Herschel ;
Rabinowitz, Joshua D. .
JOURNAL OF BACTERIOLOGY, 2010, 192 (17) :4452-4461
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:: the Keio collection [J].
Baba, Tomoya ;
Ara, Takeshi ;
Hasegawa, Miki ;
Takai, Yuki ;
Okumura, Yoshiko ;
Baba, Miki ;
Datsenko, Kirill A. ;
Tomita, Masaru ;
Wanner, Barry L. ;
Mori, Hirotada .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0008
[4]  
Bass JIF, 2013, NAT METHODS, V10, P1169, DOI [10.1038/NMETH.2728, 10.1038/nmeth.2728]
[5]   Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation [J].
Bordbar, Aarash ;
Mo, Monica L. ;
Nakayasu, Ernesto S. ;
Schrimpe-Rutledge, Alexandra C. ;
Kim, Young-Mo ;
Metz, Thomas O. ;
Jones, Marcus B. ;
Frank, Bryan C. ;
Smith, Richard D. ;
Peterson, Scott N. ;
Hyduke, Daniel R. ;
Adkins, Joshua N. ;
Palsson, Bernhard O. .
MOLECULAR SYSTEMS BIOLOGY, 2012, 8
[6]   CATABOLITE REPRESSION OF TRYPTOPHANASE IN ESCHERICHIA-COLI [J].
BOTSFORD, JL ;
DEMOSS, RD .
JOURNAL OF BACTERIOLOGY, 1971, 105 (01) :303-&
[7]   The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases [J].
Caspi, Ron ;
Altman, Tomer ;
Dale, Joseph M. ;
Dreher, Kate ;
Fulcher, Carol A. ;
Gilham, Fred ;
Kaipa, Pallavi ;
Karthikeyan, Athikkattuvalasu S. ;
Kothari, Anamika ;
Krummenacker, Markus ;
Latendresse, Mario ;
Mueller, Lukas A. ;
Paley, Suzanne ;
Popescu, Liviu ;
Pujar, Anuradha ;
Shearer, Alexander G. ;
Zhang, Peifen ;
Karp, Peter D. .
NUCLEIC ACIDS RESEARCH, 2010, 38 :D473-D479
[8]   Saccharomyces Genome Database: the genomics resource of budding yeast [J].
Cherry, J. Michael ;
Hong, Eurie L. ;
Amundsen, Craig ;
Balakrishnan, Rama ;
Binkley, Gail ;
Chan, Esther T. ;
Christie, Karen R. ;
Costanzo, Maria C. ;
Dwight, Selina S. ;
Engel, Stacia R. ;
Fisk, Dianna G. ;
Hirschman, Jodi E. ;
Hitz, Benjamin C. ;
Karra, Kalpana ;
Krieger, Cynthia J. ;
Miyasato, Stuart R. ;
Nash, Rob S. ;
Park, Julie ;
Skrzypek, Marek S. ;
Simison, Matt ;
Weng, Shuai ;
Wong, Edith D. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D700-D705
[9]   Deciphering the transcriptional regulatory logic of amino acid metabolism [J].
Cho, Byung-Kwan ;
Federowicz, Stephen ;
Park, Young-Seoub ;
Zengler, Karsten ;
Palsson, Bernhard O. .
NATURE CHEMICAL BIOLOGY, 2012, 8 (01) :65-71
[10]   The PurR regulon in Escherichia coli K-12 MG1655 [J].
Cho, Byung-Kwan ;
Federowicz, Stephen A. ;
Embree, Mallory ;
Park, Young-Seoub ;
Kim, Donghyuk ;
Palsson, Bernhard O. .
NUCLEIC ACIDS RESEARCH, 2011, 39 (15) :6456-6464