Exact dimensional reduction of linear dynamics: Application to confined diffusion

被引:52
作者
Kalinay, Pavol
Percus, Jerome K.
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Slovak Acad Sci, Inst Phys, Bratislava 84511, Slovakia
[3] NYU, Dept Phys, New York, NY 10003 USA
关键词
diffusion; Fick-Jacobs equation; dimensional reduction; mapping;
D O I
10.1007/s10955-006-9081-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In their stochastic versions, dynamical systems take the form of the linear dynamics of a probability distribution. We show that exact dimensional reduction of such systems can be carried out, and is physically relevant when the dimensions to be eliminated can be identified with those that represent transient behavior, disappearing under typical coarse graining. Application is made to non-uniform quasi-low dimensional diffusion, resulting in a systematic extension of the "classical" Fick-Jacobs approximate reduction to an exact subdynamics.
引用
收藏
页码:1059 / 1069
页数:11
相关论文
共 11 条
[1]  
[Anonymous], 1962, STUDIES STAT MECH
[2]   Calculating the hopping times of confined fluids: Two hard disks in a box [J].
Bowles, RK ;
Mon, KK ;
Percus, JK .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (21) :10668-10673
[3]  
JACOBS MH, 1967, DIFFUSION PROCESESS
[4]   Projection of two-dimensional diffusion in a narrow channel onto the longitudinal dimension [J].
Kalinay, P ;
Percus, JK .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (20)
[5]   TRANSPORT COLLECTIVE MOTION AND BROWNIAN MOTION [J].
MORI, H .
PROGRESS OF THEORETICAL PHYSICS, 1965, 33 (03) :423-+
[6]  
SCHLICHTING H, 1955, BOUNDARY LAYER THEOR, pCHE1
[7]  
van Kampen N.G., 1981, Stochastic Processes in Physics and Chemistry
[8]  
WEDDERBURN JHM, 1934, LECT MATRICES, pCH9
[9]  
Yudson VI, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.031108
[10]   DIFFUSION PAST AN ENTROPY BARRIER [J].
ZWANZIG, R .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (10) :3926-3930