Selective nanoscale positioning of ferritin and nanoparticles by means of target-specific peptides

被引:65
作者
Yamashita, Khiro
Kirimura, Hiroya
Okuda, Mitsuhiro
Nishio, Kazuaki
Sano, Ken-Ichi
Shiba, Kiyotaka
Hayashi, Tomohiro
Hara, Masahiko
Mishima, Yumiko
机构
[1] Matsushita Elect Ind Co Ltd, Adv Technol Res Labs, Seika, Kyoto 6190237, Japan
[2] Japanese Fdn Canc Res, Koto Ku, Tokyo 1358550, Japan
[3] JST, CREST, Koto Ku, Tokyo 1358550, Japan
[4] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Midori Ku, Yokohama, Kanagawa 2268502, Japan
[5] RIKEN, Frontier Res Syst, Local Spatiotemporal Funct Lab, Wako, Saitama 3510198, Japan
[6] JST, CREST, Kawaguchi, Saitama 3320012, Japan
关键词
biomineralization; nanomanipulation; nanoparticles; protein structures; surface modification;
D O I
10.1002/smll.200600220
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The synthesis of nanometer-sized titanium (Ti) surfaces by nanosphere lithography and selective nanoscale positioning of ferritin by means of target specific peptides is analyzed. Ferittin is a ubiquitous iron-storage protein and has a spherical hollow shell composed of 24 subunits and ferrihydride core. A study is conducted to modify ferittin surface so that a specific surface can be discerned and ferittin selectively absorbs on it. A tri-bonding peptide motif with a high affinity for Titanium (Ti) is used in the study. The atomic structure of the coreless minTBP1 peptide is analyzed by X-ray crystallography. The X-ray study reveals that the Ti-binding motif is mobile, confirming that the motif has the steric freedom required to form an appropriate structure with in an affinity for Ti. The adsorption of the iron oxide cores is observed by field-emission scanning electron microscopy. The experiment can be used to place many kinds of Nampa onto a substrate.
引用
收藏
页码:1148 / 1152
页数:5
相关论文
共 26 条
[1]   APPLICATIONS OF SURFACE TEXTURES PRODUCED WITH NATURAL LITHOGRAPHY [J].
DECKMAN, HW ;
DUNSMUIR, JH .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1983, 1 (04) :1109-1112
[2]   NATURAL LITHOGRAPHY [J].
DECKMAN, HW ;
DUNSMUIR, JH .
APPLIED PHYSICS LETTERS, 1982, 41 (04) :377-379
[3]   Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin [J].
Douglas, T ;
Stark, VT .
INORGANIC CHEMISTRY, 2000, 39 (08) :1828-1830
[4]   FERRIC OXYHYDROXIDE CORE OF FERRITIN [J].
HARRISON, PM ;
FISCHBAC.FA ;
HOY, TG ;
HAGGIS, GH .
NATURE, 1967, 216 (5121) :1188-&
[5]   Mechanism underlying specificity of proteins targeting inorganic materials [J].
Hayashi, T ;
Sano, K ;
Shiba, K ;
Kumashiro, Y ;
Iwahori, K ;
Yamashita, I ;
Hara, M .
NANO LETTERS, 2006, 6 (03) :515-519
[6]   Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics [J].
Haynes, CL ;
Van Duyne, RP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (24) :5599-5611
[7]   Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system [J].
Iwahori, K ;
Yoshizawa, K ;
Muraoka, M ;
Yamashita, I .
INORGANIC CHEMISTRY, 2005, 44 (18) :6393-6400
[8]  
Jones FH, 2001, SURF SCI REP, V42, P79
[9]   Study of low-temperature crystallization of amorphous Si films obtained using ferritin with Ni nanoparticles [J].
Kirimura, H ;
Uraoka, Y ;
Fuyuki, T ;
Okuda, M ;
Yamashita, I .
APPLIED PHYSICS LETTERS, 2005, 86 (26) :1-3
[10]   A 7-nm nanocolumn structure fabricated by using a ferritin iron-core mask and low-energy Cl neutral beams [J].
Kubota, T ;
Baba, T ;
Samukawa, S ;
Kawashima, H ;
Uraoka, Y ;
Fuyuki, T ;
Yamashita, I .
APPLIED PHYSICS LETTERS, 2004, 84 (09) :1555-1557