Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells

被引:292
作者
Vaquero, EC
Edderkaoui, M
Pandol, SJ
Gukovsky, I
Gukovskaya, AS
机构
[1] Vet Affairs Greater Los Angeles Healthcare Syst, Dept Med, W Los Angeles Healthcare Ctr, Los Angeles, CA 90073 USA
[2] Univ Calif Los Angeles, Los Angeles, CA 90073 USA
关键词
D O I
10.1074/jbc.M400078200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
One reason why pancreatic cancer is so aggressive and unresponsive to treatments is its resistance to apoptosis. We report here that reactive oxygen species (ROS) are a prosurvival, antiapoptotic factor in pancreatic cancer cells. Human pancreatic adenocarcinoma MIA PaCa-2 and PANC-1 cells generated ROS, which was stimulated by growth factors ( serum, insulin-like growth factor I, or fibroblast growth factor-2). Growth factors also stimulated membrane NAD(P) H oxidase activity in these cells. Both intracellular ROS and NAD( P) H oxidase activity were inhibited by antioxidants tiron and N-acetylcysteine and the inhibitor of flavoprotein-dependent oxidases, diphenylene iodonium, but not by inhibitors of various other ROS-generating enzymes. Using Rho(0) cells deficient in mitochondrial DNA, we showed that a nonmitochondrial NAD( P) H oxidase is a major source of growth factor-induced ROS in pancreatic cancer cells. Among proteins that have been implicated in NAD( P) H oxidase activity, MIA PaCa-2 and PANC-1 cells do not express the phagocytic gp91(phox) subunit but express several nonphagocytic oxidase (NOX) isoforms. Transfection with Nox4 antisense oligonucleotide inhibited NAD( P) H oxidase activity and ROS production in MIA PaCa-2 and PANC-1 cells. Inhibiting ROS with the antioxidants, Nox4 antisense, or MnSOD overexpression all stimulated apoptosis in pancreatic cancer cells as measured by internucleosomal DNA fragmentation, phosphatidylserine externalization, cytochrome c release, and effector caspase activation. The results show that growth factor-induced ROS produced by NAD( P) H oxidase ( probably Nox4) protect pancreatic cancer cells from apoptosis. This mechanism may play an important role in pancreatic cancer resistance to treatment and thus represent a novel therapeutic target.
引用
收藏
页码:34643 / 34654
页数:12
相关论文
共 57 条
[1]   Vascular endothelial growth factor induces manganese-superoxide dismutase expression in endothelial cells by a Rac1-regulated NADPH oxidase-dependent mechanism [J].
Abid, MR ;
Tsai, JC ;
Spokes, KC ;
Deshpande, SS ;
Irani, K ;
Aird, WC .
FASEB JOURNAL, 2001, 15 (11) :2548-+
[2]   Apoptosis and nuclear factor-κB:: A tale of association and dissociation [J].
Aggarwal, BB .
BIOCHEMICAL PHARMACOLOGY, 2000, 60 (08) :1033-1039
[3]   Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1 [J].
Arnold, RS ;
Shi, J ;
Murad, E ;
Whalen, AM ;
Sun, CQ ;
Polavarapu, R ;
Parthasarathy, S ;
Petros, JA ;
Lambeth, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (10) :5550-5555
[4]   The neutrophil NADPH oxidase [J].
Babior, BM ;
Lambeth, JD ;
Nauseef, W .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2002, 397 (02) :342-344
[5]   Two novel proteins activate superoxide generation by the NADPH oxidase NOX1 [J].
Bánfi, B ;
Clark, RA ;
Steger, K ;
Krause, KH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (06) :3510-3513
[6]  
Battle T. E., 2002, Current Molecular Medicine (Hilversum), V2, P381, DOI 10.2174/1566524023362456
[7]   Stress management - heat shock protein-70 and the regulation of apoptosis [J].
Beere, HM ;
Green, DR .
TRENDS IN CELL BIOLOGY, 2001, 11 (01) :6-10
[8]   Activation of pancreatic acinar cells on isolation from tissue: cytokine upregulation via p38 MAP kinase [J].
Blinman, TA ;
Gukovsky, I ;
Mouria, M ;
Zaninovic, V ;
Livingston, E ;
Pandol, SJ ;
Gukovskaya, AS .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2000, 279 (06) :C1993-C2003
[9]   NADPH oxidases: not just for leukocytes anymore! [J].
Bokoch, GM ;
Knaus, UG .
TRENDS IN BIOCHEMICAL SCIENCES, 2003, 28 (09) :502-508
[10]   NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells [J].
Brar, SS ;
Corbin, Z ;
Kennedy, TP ;
Hemendinger, R ;
Thornton, L ;
Bommarius, B ;
Arnold, RS ;
Whorton, AR ;
Sturrock, AB ;
Huecksteadt, TP ;
Quinn, MT ;
Krenitsky, K ;
Ardie, KG ;
Lambeth, JD ;
Hoidal, JR .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2003, 285 (02) :C353-C369