Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center

被引:113
作者
Liebermeister, Lars [1 ]
Petersen, Fabian [1 ]
Muenchow, Asmus V. [1 ]
Burchardt, Daniel [1 ]
Hermelbracht, Juliane [1 ]
Tashima, Toshiyuki [1 ]
Schell, Andreas W. [2 ]
Benson, Oliver [2 ]
Meinhardt, Thomas [3 ,4 ]
Krueger, Anke [3 ,4 ]
Stiebeiner, Ariane [5 ]
Rauschenbeutel, Arno [5 ]
Weinfurter, Harald [1 ,6 ]
Weber, Markus [1 ,6 ]
机构
[1] Univ Munich, Fak Phys, D-80799 Munich, Germany
[2] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[3] Univ Wurzburg, Inst Organ Chem, D-97074 Wurzburg, Germany
[4] Univ Wurzburg, Wilhelm Conrad Roentgen Res Ctr Complex Mat Syst, D-97074 Wurzburg, Germany
[5] Vienna Univ Technol, Atominst, A-1020 Vienna, Austria
[6] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
关键词
QUANTUM COMPUTATION; NANOFIBER; SPECTROSCOPY;
D O I
10.1063/1.4862207
中图分类号
O59 [应用物理学];
学科分类号
摘要
A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency of (9.5 +/- 0.6)% and (10.4 +/- 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 39 条
[1]   Coherent spectroscopy in strongly confined optical fields [J].
Agio, Mario ;
Sandoghdar, Vahid .
PHYSICA B-CONDENSED MATTER, 2012, 407 (20) :4086-4092
[2]   Phase Shift of a Weak Coherent Beam Induced by a Single Atom [J].
Aljunid, Syed Abdullah ;
Tey, Meng Khoon ;
Chng, Brenda ;
Liew, Timothy ;
Maslennikov, Gleb ;
Scarani, Valerio ;
Kurtsiefer, Christian .
PHYSICAL REVIEW LETTERS, 2009, 103 (15)
[3]  
Babinec TM, 2010, NAT NANOTECHNOL, V5, P195, DOI [10.1038/NNANO.2010.6, 10.1038/nnano.2010.6]
[4]   Physical model for the generation of ideal resources in multipartite quantum networking [J].
Ciccarello, F. ;
Paternostro, M. ;
Bose, S. ;
Browne, D. E. ;
Palma, G. M. ;
Zarcone, M. .
PHYSICAL REVIEW A, 2010, 82 (03)
[5]   Quantum description of light-pulse scattering on a single atom in waveguides [J].
Domokos, P ;
Horak, P ;
Ritsch, H .
PHYSICAL REVIEW A, 2002, 65 (03) :12
[6]   Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide [J].
Fu, K. -M. C. ;
Santori, C. ;
Barclay, P. E. ;
Aharonovich, I. ;
Prawer, S. ;
Meyer, N. ;
Holm, A. M. ;
Beausoleil, R. G. .
APPLIED PHYSICS LETTERS, 2008, 93 (23)
[7]   Highly Efficient Coupling of Photons from Nanoemitters into Single-Mode Optical Fibers [J].
Fujiwara, Masazumi ;
Toubaru, Kiyota ;
Noda, Tetsuya ;
Zhao, Hong-Quan ;
Takeuchi, Shigeki .
NANO LETTERS, 2011, 11 (10) :4362-4365
[8]   Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses [J].
Hadden, J. P. ;
Harrison, J. P. ;
Stanley-Clarke, A. C. ;
Marseglia, L. ;
Ho, Y. -L. D. ;
Patton, B. R. ;
O'Brien, J. L. ;
Rarity, J. G. .
APPLIED PHYSICS LETTERS, 2010, 97 (24)
[9]   Dye molecules as single-photon sources and large optical nonlinearities on a chip [J].
Hwang, J. ;
Hinds, E. A. .
NEW JOURNAL OF PHYSICS, 2011, 13
[10]   Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis [J].
Jennewein, Thomas ;
Barbieri, Marco ;
White, Andrew G. .
JOURNAL OF MODERN OPTICS, 2011, 58 (3-4) :276-287