Novel polymer-synthesized ceramic composite-based system for bone repair:: An in vitro evaluation

被引:97
作者
Khan, YM
Katti, DS
Laurencin, CT
机构
[1] Univ Virginia, Dept Orthopaed Surg, Sch Med, Charlottesville, VA 22903 USA
[2] Drexel Univ, Sch Biomed Engn Sci & Hlth Syst, Philadelphia, PA 19104 USA
[3] Univ Virginia, Dept Biomed Engn, Charlottesville, VA 22904 USA
[4] Univ Virginia, Dept Chem Engn, Charlottesville, VA 22904 USA
关键词
polymer; calcium phosphate; bone; tissue engineering; microsphere; poly (lactide-co-glycolide); composite; three-dimensional; scaffold;
D O I
10.1002/jbm.a.30051
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The emergence of synthetic bone repair scaffolds has been necessitated by the limitations of both autografts and allografts. Several candidate materials are available including degradable polymers and ceramics. However, these materials possess their own limitations that at least in part may be overcome by combining the two materials into a composite. Toward that end, a novel approach to forming a polymer/ceramic composite has been developed that combines degradable poly(lactide-co-glycolide) microspheres and a poorly crystalline calcium phosphate that is synthesized within the microspheres, which are then fused together to form a porous three-dimensional scaffold for bone repair. The design, fabrication, and characterization of the composite microspheres, the calcium phosphate formed within these microspheres, and the formation of scaffolds were studied. The calcium phosphate formed was analyzed by x-ray diffraction, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy, and was shown to be similar to native bone in both composition and crystallinity by controlling certain processing parameters such as mixing time, solution pH, and mixing temperature. Scaffolds with porous interconnected structures and mechanical properties in the range of trabecular bone were fabricated via precise control of polymer/ceramic ratios within the microspheres and scaffold heating times. This composite scaffold represents a new and important vehicle for bone-tissue engineering. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:728 / 737
页数:10
相关论文
共 39 条
[1]   Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants [J].
Abu Bakar, MS ;
Cheng, MHW ;
Tang, SM ;
Yu, SC ;
Liao, K ;
Tan, CT ;
Khor, KA ;
Cheang, P .
BIOMATERIALS, 2003, 24 (13) :2245-2250
[2]  
Ambrosio AMA, 2001, J BIOMED MATER RES, V58, P295, DOI 10.1002/1097-4636(2001)58:3<295::AID-JBM1020>3.3.CO
[3]  
2-#
[4]   Fundamentals of biomechanics in tissue engineering of bone [J].
Athanasiou, KA ;
Zhu, CF ;
Lanctot, DR ;
Agrawal, CM ;
Wang, X .
TISSUE ENGINEERING, 2000, 6 (04) :361-381
[5]   Bonelike apatite growth on hydroxyapatite-gelatin sponges from simulated body fluid [J].
Bigi, A ;
Boanini, E ;
Panzavolta, S ;
Roveri, N ;
Rubini, K .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 59 (04) :709-715
[6]   Chemical and structural characterization of the mineral phase from cortical and trabecular bone [J].
Bigi, A ;
Cojazzi, G ;
Panzavolta, S ;
Ripamonti, A ;
Roveri, N ;
Romanello, M ;
Suarez, KN ;
Moro, L .
JOURNAL OF INORGANIC BIOCHEMISTRY, 1997, 68 (01) :45-51
[7]   Tissue engineered microsphere-based matrices for bone repair: design and evaluation [J].
Borden, M ;
Attawia, M ;
Khan, Y ;
Laurencin, CT .
BIOMATERIALS, 2002, 23 (02) :551-559
[8]   Allograft bone - The influence of processing on safety and performance [J].
Boyce, T ;
Edwards, J ;
Scarborough, N .
ORTHOPEDIC CLINICS OF NORTH AMERICA, 1999, 30 (04) :571-+
[9]  
Bucholz RW, 2002, CLIN ORTHOP RELAT R, P44
[10]   THE EFFECT OF RECOMBINANT HUMAN OSTEOGENIC PROTEIN-1 ON HEALING OF LARGE SEGMENTAL BONE DEFECTS [J].
COOK, SD ;
BAFFES, GC ;
WOLFE, MW ;
SAMPATH, TK ;
RUEGER, DC ;
WHITECLOUD, TS .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1994, 76A (06) :827-838