The uniqueness theorem for entanglement measures

被引:150
作者
Donald, MJ
Horodecki, M
Rudolph, O
机构
[1] Univ Pavia, Dipartimento Fis A Volta, Quantum Opt & Informat Grp, I-27100 Pavia, Italy
[2] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[3] Univ Gdansk, Inst Theoret Phys & Astrophys, PL-80952 Gdansk, Poland
关键词
D O I
10.1063/1.1495917
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We explore and develop the mathematics of the theory of entanglement measures. After a careful review and analysis of definitions, of preliminary results, and of connections between conditions on entanglement measures, we prove a sharpened version of a uniqueness theorem which gives necessary and sufficient conditions for an entanglement measure to coincide with the reduced von Neumann entropy on pure states. We also prove several versions of a theorem on extreme entanglement measures in the case of mixed states. We analyze properties of the asymptotic regularization of entanglement measures proving, for example, convexity for the entanglement cost and for the regularized relative entropy of entangle ment. (C) 2002 American Institute of Physics.
引用
收藏
页码:4252 / 4272
页数:21
相关论文
共 63 条
[1]   Asymptotic relative entropy of entanglement -: art. no. 217902 [J].
Audenaert, K ;
Eisert, J ;
Jané, E ;
Plenio, MB ;
Virmani, S ;
De Moor, B .
PHYSICAL REVIEW LETTERS, 2001, 87 (21) :217902-1
[2]  
Audenaert K., QUANTPH0103096
[3]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[4]   Quantum nonlocality without entanglement [J].
Bennett, CH ;
DiVincenzo, DP ;
Fuchs, CA ;
Mor, T ;
Rains, E ;
Shor, PW ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW A, 1999, 59 (02) :1070-1091
[5]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[6]  
BENNETT CH, QUANTPH9804053
[7]  
BENNETT CH, QUANTPH9511030
[8]  
BENNETT CH, QUANTPH9604024
[9]   COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :285-290
[10]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X