Synthesis and photografting of highly pH-responsive polymer chains

被引:16
作者
Sebra, Robert P.
Kasko, Andrea M.
Anseth, Kristi S.
Bowman, Christopher N.
机构
[1] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[2] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA
[3] Univ Colorado, Hlth Sci Ctr, Dept Restorat Dent, Biomat Res Ctr, Denver, CO 80262 USA
关键词
grafting; photopolymerization; chemosensor; microfluidics;
D O I
10.1016/j.snb.2005.11.066
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Here, we describe the construction of pH sensitive surfaces via the synthesis and controlled photografting of pH sensitive, fluorescent tethers from the surface of a reactive polymeric substrate. The living radical photografting technique presented makes use of dithiocarbamate-functionalized polymer to graft synthetic poly(ethylene glycol) acrylate succinyl fluorescein. Fluorescence intensity of grafted chains is analyzed as a function of photografting reaction time, graft length, buffer solution pH, and cycling sensors from acidic to basic conditions for optical switching. The graft fluorescence response occurs rapidly in a basic environment and grafted functionalities do not cleave or dramatically deplete (up to 72 h later) upon initial exposure to high or low pH buffers. This behavior is a result of the increased stability when introducing the PEG spacer into the structure of the fluorescein. Ultimately, the pH sensitive grafts developed here demonstrate rapid response times, are easy to produce, and are readily integrated onto a fully polymeric microfluidic device using photolithographic techniques and spatially controlled living radical photografting chemistry. Once integrated, sensors such as these could be useful in monitoring pH changes when mixing, reacting, or introducing new chemicals onto a microdevice like the one presented. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 134
页数:8
相关论文
共 26 条
[1]   Immobilization of antibodies on a photoactive self-assembled monolayer on gold [J].
Delamarche, E ;
Sundarababu, G ;
Biebuyck, H ;
Michel, B ;
Gerber, C ;
Sigrist, H ;
Wolf, H ;
Ringsdorf, H ;
Xanthopoulos, N ;
Mathieu, HJ .
LANGMUIR, 1996, 12 (08) :1997-2006
[2]   Patterned delivery of immunoglobulins to surfaces using microfluidic networks [J].
Delamarche, E ;
Bernard, A ;
Schmid, H ;
Michel, B ;
Biebuyck, H .
SCIENCE, 1997, 276 (5313) :779-781
[3]   Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP) [J].
Hutchison, JB ;
Haraldsson, KT ;
Good, BT ;
Sebra, RP ;
Luo, N ;
Anseth, KS ;
Bowman, CN .
LAB ON A CHIP, 2004, 4 (06) :658-662
[4]   Microfluidic systems in proteomics [J].
Lion, N ;
Rohner, TC ;
Dayon, L ;
Arnaud, IL ;
Damoc, E ;
Youhnovski, N ;
Wu, ZY ;
Roussel, C ;
Josserand, J ;
Jensen, H ;
Rossier, JS ;
Przybylski, M ;
Girault, HH .
ELECTROPHORESIS, 2003, 24 (21) :3533-3562
[5]   Polymerizable Fab′ antibody fragments for targeting of anticancer drugs [J].
Lu, ZR ;
Kopecková, P ;
Kopecek, J .
NATURE BIOTECHNOLOGY, 1999, 17 (11) :1101-1104
[6]   A methacrylated photoiniferter as a chemical basis for microlithography: Micropatterning based on photografting polymerization [J].
Luo, N ;
Metters, AT ;
Hutchison, JB ;
Bowman, CN ;
Anseth, KS .
MACROMOLECULES, 2003, 36 (18) :6739-6745
[7]   Surface-initiated photopolymerization of poly(ethylene glycol) methyl ether methacrylate on a diethyldithiocarbamate-mediated polymer substrate [J].
Luo, N ;
Hutchison, JB ;
Anseth, KS ;
Bowman, CN .
MACROMOLECULES, 2002, 35 (07) :2487-2493
[8]   Synthesis of a novel methacrylic monomer iniferter and its application in surface photografting on crosslinked polymer substrates [J].
Luo, N ;
Hutchison, JB ;
Anseth, KS ;
Bowman, CN .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2002, 40 (11) :1885-1891
[9]  
Matsuda T, 1996, J BIOMED MATER RES, V32, P165
[10]   Micropatterned agarose gels for stamping arrays of proteins and gradients of proteins [J].
Mayer, M ;
Yang, J ;
Gitlin, I ;
Gracias, DH ;
Whitesides, GM .
PROTEOMICS, 2004, 4 (08) :2366-2376