Computer simulations of transport through membranes: Passive diffusion, pores, channels and transporters

被引:40
作者
Tieleman, D. Peter [1 ]
机构
[1] Univ Calgary, Dept Biol Sci, Calgary, AB T2N 1N4, Canada
关键词
ATP-binding cassette (ABC) transporter; computer simulation; drug diffusion; electroporation; membrane transport; molecular dynamics; potassium channel;
D O I
10.1111/j.1440-1681.2006.04461.x
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
A key function of biological membranes is to provide mechanisms for the controlled transport of ions, nutrients, metabolites, peptides and proteins between a cell and its environment. We are using computer simulations to study several processes involved in transport. In model membranes, the distribution of small molecules can be accurately calculated; we are making progress towards understanding the factors that determine the partitioning behaviour in the inhomogeneous lipid environment, with implications for drug distribution, membrane protein folding and the energetics of voltage gating. Lipid bilayers can be simulated at a scale that is sufficiently large to study significant defects, such as those caused by electroporation. Computer simulations of complex membrane proteins, such as potassium channels and ATP-binding cassette (ABC) transporters, can give detailed information about the atomistic dynamics that form the basis of ion transport, selectivity, conformational change and the molecular mechanism of ATP-driven transport. This is illustrated in the present review with recent simulation studies of the voltage-gated potassium channel KvAP and the ABC transporter BtuCD.
引用
收藏
页码:893 / 903
页数:11
相关论文
共 69 条
[1]   Orientation and dynamics of benzyl alcohol and benzyl alkyl ethers dissolved in nematic lyotropic liquid crystals.: 2H NMR and molecular dynamics simulations [J].
Ahumada, H ;
Montecinos, R ;
Tieleman, DP ;
Weiss-López, BE .
JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (30) :6644-6651
[2]   Ion permeation mechanism of the potassium channel [J].
Åqvist, J ;
Luzhkov, V .
NATURE, 2000, 404 (6780) :881-884
[3]   Computer simulations of membrane proteins [J].
Ash, WL ;
Zlomislic, MR ;
Oloo, EO ;
Tieleman, DP .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2004, 1666 (1-2) :158-189
[4]   Ion channel gating: insights via molecular simulations [J].
Beckstein, O ;
Biggin, PC ;
Bond, P ;
Bright, JN ;
Domene, C ;
Grottesi, A ;
Holyoake, J ;
Sansom, MSP .
FEBS LETTERS, 2003, 555 (01) :85-90
[5]   Computer simulation of small molecule permeation across a lipid bilayer: Dependence on bilayer properties and solute volume, size, and cross-sectional area [J].
Bemporad, D ;
Luttmann, C ;
Essex, JW .
BIOPHYSICAL JOURNAL, 2004, 87 (01) :1-13
[6]   Energetics of ion conduction through the K+ channel [J].
Bernèche, S ;
Roux, B .
NATURE, 2001, 414 (6859) :73-77
[7]   A microscopic view of ion conduction through the K+ channel [J].
Bernèche, S ;
Roux, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (15) :8644-8648
[8]   The voltage-sensor structure in a voltage-gated channel [J].
Bezanilla, F .
TRENDS IN BIOCHEMICAL SCIENCES, 2005, 30 (04) :166-168
[9]  
Bezanilla F, 2003, ADV PROTEIN CHEM, V63, P211
[10]   The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter [J].
Borths, EL ;
Locher, KP ;
Lee, AT ;
Rees, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (26) :16642-16647