In vivo production of artificial nonribosomal peptide products in the heterologous host Escherichia coli

被引:73
作者
Gruenewald, S [1 ]
Mootz, HD [1 ]
Stehmeier, P [1 ]
Stachelhaus, T [1 ]
机构
[1] Univ Marburg, Dept Chem Biochem, D-35032 Marburg, Germany
关键词
D O I
10.1128/AEM.70.6.3282-3291.2004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Nonribosomal peptide synthetases represent the enzymatic assembly lines for the biosynthesis of pharmacologically relevant natural peptides, e.g., cyclosporine, vancomycin, and penicillin. Due to their modular organization, in which every module accounts for the incorporation of a single amino acid, artificial assembly lines for the production of novel peptides can be constructed by biocombinatorial approaches. Once transferred into an appropriate host, these hybrid synthetases could facilitate the bioproduction of basically any peptide-based molecule. In the present study, we describe the fermentative production of the cyclic dipeptide D-Phe-Pro-diketopiperazine, as a prototype for the exploitation of the heterologous host Escherichia coli, and the use of artificial nonribosomal peptide synthetases. E. coli provides a tremendous potential for genetic engineering and was manipulated in our study by stable chromosomal integration of the 4'-phosphopantetheine transferase gene sfp to ensure heterologous production of fully active holoenzmyes. D-Phe-Pro-diketopiperazine is formed by the TycA/TycB1 system, whose components represent the first two modules for tyrocidine biosynthesis in Bacillus brevis. Coexpression of the corresponding genes in E. coli gave rise to the production of the expected diketopiperazine product, demonstrating the functional interaction of both modules in the heterologous environment. Furthermore, the cyclic dipeptide is stable and not toxic to E. coli and is secreted into the culture medium without the need for any additional factors. Parameters affecting the productivity were comprehensively investigated, including various genetic setups, as well as variation of medium composition and temperature. B, these means, the overall productivity of the artificial system could be enhanced by over 400% to yield about 9 mg of D-Phe-Pro-diketopiperazine/liter. As a general tool, this approach could allow the sustainable bioproduction of peptides, e.g., those used as pharmaceuticals or fine chemicals.
引用
收藏
页码:3282 / 3291
页数:10
相关论文
共 53 条
[1]   CONSTRUCTION AND PROPERTIES OF A FAMILY OF PACYC184-DERIVED CLONING VECTORS COMPATIBLE WITH PBR322 AND ITS DERIVATIVES [J].
BARTOLOME, B ;
JUBETE, Y ;
MARTINEZ, E ;
DELACRUZ, F .
GENE, 1991, 102 (01) :75-78
[2]   Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis [J].
Belshaw, PJ ;
Walsh, CT ;
Stachelhaus, T .
SCIENCE, 1999, 284 (5413) :486-489
[3]   Mutational analysis of the C-domain in nonribosomal peptide synthesis [J].
Bergendahl, V ;
Linne, U ;
Marahiel, MA .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (02) :620-629
[4]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[5]   Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA [J].
Brady, SF ;
Chao, CJ ;
Handelsman, J ;
Clardy, J .
ORGANIC LETTERS, 2001, 3 (13) :1981-1984
[6]   The mechanism of ACV synthetase [J].
Byford, MF ;
Baldwin, JE ;
Shiau, CY ;
Schofield, CJ .
CHEMICAL REVIEWS, 1997, 97 (07) :2631-2649
[7]  
CASADABAN MJ, 1979, P NATL ACAD SCI USA, V76, P4530, DOI 10.1073/pnas.76.9.4530
[8]   Dipeptide formation on engineered hybrid peptide synthetases [J].
Doekel, S ;
Marahiel, MA .
CHEMISTRY & BIOLOGY, 2000, 7 (06) :373-384
[9]   Heterologous expression of nonribosomal peptide synthetases in B subtilis:: construction of a bi-functional B-subtilis/E-coli shuttle vector system [J].
Doekel, S ;
Eppelmann, K ;
Marahiel, MA .
FEMS MICROBIOLOGY LETTERS, 2002, 216 (02) :185-191
[10]   Construction of hybrid peptide synthetases for the production of α-L-aspartyl-L-phenylalanine, a precursor for the high-intensity sweetener aspartame [J].
Duerfahrt, T ;
Doekel, S ;
Sonke, T ;
Quaedflieg, PJLM ;
Marahiel, MA .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2003, 270 (22) :4555-4563