White matter lesion extension to automatic brain tissue segmentation on MRI

被引:251
作者
de Boer, Renske [1 ,2 ]
Vrooman, Henri A. [2 ]
van der Lijn, Fedde [2 ]
Vernooij, Meike W. [1 ,3 ]
Ikram, M. Arfan [1 ]
van der Lugt, Aad [3 ]
Breteler, Monique M. B. [1 ]
Niessen, Wiro J. [2 ,4 ]
机构
[1] Erasmus MC, Dept Epidemiol, Rotterdam, Netherlands
[2] Erasmus MC, Biomed Imaging Grp Rotterdam, Dept Radiol & Med Informat, Rotterdam, Netherlands
[3] Erasmus MC, Dept Radiol, Rotterdam, Netherlands
[4] Delft Univ Technol, Fac Sci Appl, NL-2600 AA Delft, Netherlands
关键词
MRI; Brain tissue segmentation; White matter lesions; White matter hyperintensities; ROTTERDAM SCAN; DISCRIMINANT-ANALYSIS; MULTIPLE-SCLEROSIS; MUTUAL-INFORMATION; IMAGES; CLASSIFICATION; VOLUME; POPULATION; MODEL; HYPERINTENSITIES;
D O I
10.1016/j.neuroimage.2009.01.011
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1151 / 1161
页数:11
相关论文
共 37 条
[1]   Fully automatic segmentation of white matter hyperintensities in MR images of the elderly [J].
Admiraal-Behloul, F ;
van den Heuvel, DMJ ;
Olofsen, H ;
van Osch, MJP ;
van der Grond, J ;
van Buchem, MA ;
Relber, JHC .
NEUROIMAGE, 2005, 28 (03) :607-617
[2]  
Alfano B, 2000, J MAGN RESON IMAGING, V12, P799, DOI 10.1002/1522-2586(200012)12:6<799::AID-JMRI2>3.0.CO
[3]  
2-#
[4]   Segmentation of magnetic resonance brain images through discriminant analysis [J].
Amato, U ;
Larobina, M ;
Antoniadis, A ;
Alfano, B .
JOURNAL OF NEUROSCIENCE METHODS, 2003, 131 (1-2) :65-74
[5]   Probabilistic segmentation of brain tissue in MR imaging [J].
Anbeek, P ;
Vincken, KL ;
van Bochove, GS ;
van Osch, MJP ;
van der Grond, J .
NEUROIMAGE, 2005, 27 (04) :795-804
[6]   Automatic segmentation of different-sized white matter lesions by voxel probability estimation [J].
Anbeek, P ;
Vincken, KL ;
van Osch, MJP ;
Bisschops, RHC ;
van der Grond, J .
MEDICAL IMAGE ANALYSIS, 2004, 8 (03) :205-215
[7]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[8]   Adaptive Markov modeling for mutual-information-based, unsupervised MRI brain-tissue classification [J].
Awate, Suyash P. ;
Tasdizen, Tolga ;
Foster, Norman ;
Whitaker, Ross T. .
MEDICAL IMAGE ANALYSIS, 2006, 10 (05) :726-739
[9]  
Barra V, 2000, JMRI-J MAGN RESON IM, V11, P267, DOI 10.1002/(SICI)1522-2586(200003)11:3<267::AID-JMRI5>3.0.CO
[10]  
2-8