White matter lesion extension to automatic brain tissue segmentation on MRI

被引:251
作者
de Boer, Renske [1 ,2 ]
Vrooman, Henri A. [2 ]
van der Lijn, Fedde [2 ]
Vernooij, Meike W. [1 ,3 ]
Ikram, M. Arfan [1 ]
van der Lugt, Aad [3 ]
Breteler, Monique M. B. [1 ]
Niessen, Wiro J. [2 ,4 ]
机构
[1] Erasmus MC, Dept Epidemiol, Rotterdam, Netherlands
[2] Erasmus MC, Biomed Imaging Grp Rotterdam, Dept Radiol & Med Informat, Rotterdam, Netherlands
[3] Erasmus MC, Dept Radiol, Rotterdam, Netherlands
[4] Delft Univ Technol, Fac Sci Appl, NL-2600 AA Delft, Netherlands
关键词
MRI; Brain tissue segmentation; White matter lesions; White matter hyperintensities; ROTTERDAM SCAN; DISCRIMINANT-ANALYSIS; MULTIPLE-SCLEROSIS; MUTUAL-INFORMATION; IMAGES; CLASSIFICATION; VOLUME; POPULATION; MODEL; HYPERINTENSITIES;
D O I
10.1016/j.neuroimage.2009.01.011
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1151 / 1161
页数:11
相关论文
共 37 条
[11]   A fully automatic and robust brain MRI tissue classification method [J].
Cocosco, CA ;
Zijdenbos, AP ;
Evans, AC .
MEDICAL IMAGE ANALYSIS, 2003, 7 (04) :513-527
[12]   Periventricular cerebral white matter lesions predict rate of cognitive decline [J].
de Groot, JC ;
de Leeuw, FE ;
Oudkerk, M ;
van Gijn, J ;
Hofman, A ;
Jolles, J ;
Breteler, MMB .
ANNALS OF NEUROLOGY, 2002, 52 (03) :335-341
[13]   Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study [J].
de Leeuw, FE ;
de Groot, JC ;
Achten, E ;
Oudkerk, M ;
Ramos, LMP ;
Heijboer, R ;
Hofman, A ;
Jolles, J ;
van Gijn, J ;
Breteler, MMB .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2001, 70 (01) :9-14
[14]   Measures of brain morphology and infarction in the framingham heart study: establishing what is normal [J].
DeCarli, C ;
Massaro, J ;
Harvey, D ;
Hald, J ;
Tullberg, M ;
Au, R ;
Beiser, A ;
D'Agostino, R ;
Wolf, PA .
NEUROBIOLOGY OF AGING, 2005, 26 (04) :491-510
[15]   Improving tissue classification in MRI: A three-dimensional multispectral discriminant analysis method with automated training class selection [J].
Harris, G ;
Andreasen, NC ;
Cizadlo, T ;
Bailey, JM ;
Bockholt, HJ ;
Magnotta, VA ;
Arndt, S .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1999, 23 (01) :144-154
[16]   The Rotterdam Study: Objectives and design update [J].
Hofman, Albert ;
Breteler, Monique M. B. ;
van Duijn, Cornelia M. ;
Krestin, Gabriel P. ;
Pols, Huibert A. ;
Stricker, Bruno H. Ch. ;
Tiemeier, Henning ;
Uitterlinden, Andre G. ;
Vingerling, Johannes R. ;
Witteman, Jacqueline C. M. .
EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2007, 22 (11) :819-829
[17]   Brain tissue volumes in the general elderly population - The Rotterdam Scan Study [J].
Ikram, M. Arfan ;
Vrooman, Henri A. ;
Vernooij, Meike W. ;
van der Lijn, Fedde ;
Hofman, Albert ;
van der Lugt, Aad ;
Niessen, Wiro J. ;
Breteler, Monique M. B. .
NEUROBIOLOGY OF AGING, 2008, 29 (06) :882-890
[18]   FLAIR histogram segmentation for measurement of leukoaraiosis volume [J].
Jack, CR ;
O'Brien, PC ;
Rettman, DW ;
Shiung, MM ;
Xu, YC ;
Muthupillai, R ;
Manduca, A ;
Avula, R ;
Erickson, BJ .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2001, 14 (06) :668-676
[19]  
KHAYATI R, 2008, COMPUT BIOL MED FEB
[20]   Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines [J].
Klein, Stefan ;
Staring, Marius ;
Pluim, Josien P. W. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) :2879-2890