Disrotatory versus conrotatory electrocyclic ring opening of Dewar benzene:: the conrotatory pathway is preferred and does not involve trans-benzene

被引:18
作者
Havenith, RWA
Jenneskens, LW
van Lenthe, JH
机构
[1] Univ Utrecht, Debye Inst, Dept Phys Organ Chem, NL-3584 CH Utrecht, Netherlands
[2] Univ Utrecht, Debye Inst, Theoret Chem Grp, NL-3584 CH Utrecht, Netherlands
来源
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM | 1999年 / 492卷
关键词
CASSCF; MRCI; reaction path; Dewar benzene; benzene;
D O I
10.1016/S0166-1280(99)00166-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For the electrocyclic ring opening of Dewar benzene (2) into benzene (1), both a disrotatory and conrotatory pathway with distinct transition states, TS1 and TS2, respectively, were found at the CASSCF(10,10)/6-311G** level of theory. The importance of the CASSCF(10,10) active space for the proper description of TS1 and TS2 was illustrated by similar calculations using a smaller active space, viz. CASSCF(2,2), CASSCF(4,4) and CASSCF(6,6). Although TS2 represents a true saddle point, TS1 appears to be a higher order saddle point at these levels of theory. Single-point multi-reference SDCI (MRCI) calculations at the CASSCF(10,10)/6-311G** geometries and natural orbitals were performed at all stationary points to obtain more reliable total energies. In contrast to common belief, TS2 lies below TS1 (by 6.62 kcal/mol), i.e. the conrotatory process is favored. Moreover, CASSCF(10,10)/6-311G** Intrinsic Reaction Coordinate (IRC) calculations show that upon conrotatory electrocyclic ring opening 2 does not give the extraordinarily strained traits-benzene (3), i.e. cis, cis, trans-cyclohexa-1,3,5-triene. The conversion of 3 into 1 and vice versa is a distinct process on the C6H6 potential energy surface. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:217 / 224
页数:8
相关论文
共 25 条
[11]   AB-INITIO CONFORMATIONAL-ANALYSIS OF TRANS-CYCLOHEXENE [J].
JOHNSON, RP ;
DIRICO, KJ .
JOURNAL OF ORGANIC CHEMISTRY, 1995, 60 (04) :1074-1076
[12]   SELF-CONSISTENT MOLECULAR-ORBITAL METHODS .20. BASIS SET FOR CORRELATED WAVE-FUNCTIONS [J].
KRISHNAN, R ;
BINKLEY, JS ;
SEEGER, R ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (01) :650-654
[13]   CONFIGURATION INTERACTION CALCULATIONS ON NITROGEN MOLECULE [J].
LANGHOFF, SR ;
DAVIDSON, ER .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1974, 8 (01) :61-72
[14]   GAS-PHASE STRUCTURES OF ISOMERS OF BENZENE .5. (DEWAR-BENZENE) BY ELECTRON-DIFFRACTION [J].
MCNEILL, EA ;
SCHOLER, FR .
JOURNAL OF MOLECULAR STRUCTURE, 1976, 31 (01) :65-72
[15]   KINETICS AND THERMOCHEMISTRY OF THERMAL REARRANGEMENT OF HEXAMETHYLBICYCLO[2.2.0]HEXA-2,5-DIENE (HEXAMETHYLDEWARBENZENE) AND OF HEXAMETHYLTETRACYCLO[2.2.0,02,6.03,5]HEXANE (HEXAMETHYLPRISMANE) [J].
OTH, JFM .
RECUEIL DES TRAVAUX CHIMIQUES DES PAYS-BAS, 1968, 87 (11) :1185-&
[16]  
ROOS BO, 1987, INITIO METHODS QUA 2, P399
[17]   THE DIRECT CI METHOD - A DETAILED ANALYSIS [J].
SAUNDERS, VR ;
VANLENTHE, JH .
MOLECULAR PHYSICS, 1983, 48 (05) :923-954
[18]   Nucleus-independent chemical shifts: A simple and efficient aromaticity probe [J].
Schleyer, PV ;
Maerker, C ;
Dransfeld, A ;
Jiao, HJ ;
Hommes, NJRV .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (26) :6317-6318
[20]  
Spangler D., 1980, NRCC SOFTWARE CATALO, V1