Marginal modeling of multilevel binary data with time-varying covariates

被引:59
作者
Miglioretti, DL [1 ]
Heagerty, PJ [1 ]
机构
[1] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
关键词
conditional; endogeneity; hierarchical models; longitudinal data; marginal; transition models;
D O I
10.1093/biostatistics/kxg042
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose and compare two approaches for regression analysis of multilevel binary data when clusters are not necessarily nested: a GEE method that relies on a working independence assumption coupled with a three-step method for obtaining empirical standard errors, and a likelihood-based method implemented using Bayesian computational techniques. Implications of time-varying endogenous covariates are addressed. The methods are illustrated using data from the Breast Cancer Surveillance Consortium to estimate mammography accuracy from a repeatedly screened population.
引用
收藏
页码:381 / 398
页数:18
相关论文
共 27 条
[1]   Modeling a categorical variable allowing arbitrarily many category choices [J].
Agresti, A ;
Liu, IM .
BIOMETRICS, 1999, 55 (03) :936-943
[2]  
[Anonymous], 2002, ANAL LONGITUDINAL DA
[3]  
Betensky R A, 2000, Biostatistics, V1, P219, DOI 10.1093/biostatistics/1.2.219
[4]  
Bryk A.S., 1992, Hierarchical Models: Applications and Data Analysis Methods
[5]  
Carlin J B, 2001, Biostatistics, V2, P397, DOI 10.1093/biostatistics/2.4.397
[6]   Hierarchical generalized linear models in the analysis of variations in health care utilization [J].
Daniels, MJ ;
Gatsonis, C .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (445) :29-42
[7]   AN APPROACH TO THE ANALYSIS OF REPEATED MEASUREMENTS [J].
DIGGLE, PJ .
BIOMETRICS, 1988, 44 (04) :959-971
[8]  
GOLDSTEIN H, 1995, MULTILEVEL MODELS
[9]  
Heagerty PJ, 2000, STAT SCI, V15, P1
[10]   Marginalized transition models and likelihood inference for longitudinal categorical data [J].
Heagerty, PJ .
BIOMETRICS, 2002, 58 (02) :342-351