Effect of noise on generalized chaotic synchronization

被引:26
作者
Guan, SG [1 ]
Lai, YC
Lai, CH
机构
[1] Natl Univ Singapore, Temasek Labs, Singapore 117508, Singapore
[2] Natl Univ Singapore, Beijing Hong Kong Singapore Joint Ctr Nonlinear, Singapore 117543, Singapore
[3] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA
[4] Natl Univ Singapore, Dept Phys, Singapore 117543, Singapore
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 04期
关键词
D O I
10.1103/PhysRevE.73.046210
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
When two characteristically different chaotic oscillators are coupled, generalized synchronization can occur. Motivated by the phenomena that common noise can induce and enhance complete synchronization or phase synchronization in chaotic systems, we investigate the effect of noise on generalized chaotic synchronization. We develop a phase-space analysis, which suggests that the effect can be system dependent in that common noise can either induce/enhance or destroy generalized synchronization. A prototype model consisting of a Lorenz oscillator coupled with a dynamo system is used to illustrate these phenomena.
引用
收藏
页数:5
相关论文
共 37 条
[1]   Generalized synchronization of chaos: The auxiliary system approach [J].
Abarbanel, HDI ;
Rulkov, NF ;
Sushchik, MM .
PHYSICAL REVIEW E, 1996, 53 (05) :4528-4535
[2]   THE MECHANISM OF STOCHASTIC RESONANCE [J].
BENZI, R ;
SUTERA, A ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (11) :L453-L457
[3]   PRODUCT OF RANDOM MATRICES IN A MICROCANONICAL ENSEMBLE [J].
DEUTSCH, JM ;
PALADIN, G .
PHYSICAL REVIEW LETTERS, 1989, 62 (07) :695-699
[4]   A NEW INTERMITTENCY IN COUPLED DYNAMICAL-SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1985, 74 (04) :918-921
[5]   INTERMITTENCY CAUSED BY CHAOTIC MODULATION .2. LYAPUNOV EXPONENT, FRACTAL STRUCTURE AND POWER SPECTRUM [J].
FUJISAKA, H ;
ISHII, H ;
INOUE, M ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1986, 76 (06) :1198-1209
[6]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS .4. INSTABILITY OF SYNCHRONIZED CHAOS AND NEW INTERMITTENCY [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1986, 75 (05) :1087-1104
[7]   The origin of non-chaotic behavior in identically driven systems [J].
Gade, PM ;
Basu, C .
PHYSICS LETTERS A, 1996, 217 (01) :21-27
[8]   Stochastic resonance [J].
Gammaitoni, L ;
Hanggi, P ;
Jung, P ;
Marchesoni, F .
REVIEWS OF MODERN PHYSICS, 1998, 70 (01) :223-287
[9]   CRISES, SUDDEN CHANGES IN CHAOTIC ATTRACTORS, AND TRANSIENT CHAOS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1983, 7 (1-3) :181-200
[10]   Bistable chaos without symmetry in generalized synchronization [J].
Guan, SG ;
Lai, CH ;
Wei, GW .
PHYSICAL REVIEW E, 2005, 71 (03)