Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells

被引:290
作者
Cao, Carolyn
Subhawong, Ty
Albert, Jeffrey M.
Kim, Kwang Woon
Geng, Ling
Sekhar, Konjeti R.
Gi, Young Jin
Lu, Bo
机构
[1] Vanderbilt Univ, Sch Med, Vanderbilt Ingram Canc Ctr, Dept Radiat Oncol, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Sch Med, Vanderbilt Ingram Canc Ctr, Dept Surg Oncol, Nashville, TN 37232 USA
关键词
D O I
10.1158/0008-5472.CAN-06-0802
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The phosphatidylinositol 3-kinase/Akt pathway plays a critical role in oncogenesis, and dysregulation of this pathway through loss of PTEN suppression is a particularly common phenomenon in aggressive prostate cancers. The mammalian target of rapamycin (mTOR) is a downstream signaling kinase in this pathway, exerting prosurvival influence on cells through the activation of factors involved in protein synthesis. The mTOR inhibitor rapamycin and its derivatives are cytotoxic to a number of cell lines. Recently, mTOR inhibition has also been shown to radiosensitize endothelial and breast cancer cells in vitro. Because radiation is an important modality in the treatment of prostate cancer, we tested the ability of the mTOR inhibitor RAD001 (everolimus) to enhance the cytotoxic effects of radiation on two prostate cancer cell lines, PC-3 and DU145. We found that both cell lines became more vulnerable to irradiation after treatment with RAD001, with the PTEN-deficient PC-3 cell line showing the greater sensitivity. This increased susceptibility to radiation is associated with induction of autophagy. Furthermore, we show that blocking apoptosis with caspase inhibition and Bax/Bak small interfering RNA in these cell lines enhances radiation-induced mortality and induces autophagy. Together, these data highlight the emerging importance of mTOR as a molecular target for therapeutic intervention, and lend support to the idea that nonapoptotic modes of cell death may play a crucial role in improving tumor cell kill.
引用
收藏
页码:10040 / 10047
页数:8
相关论文
共 44 条
[1]   Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer [J].
Albert, Jeffrey M. ;
Kim, Kwang Woon ;
Cao, Carolyn ;
Lu, Bo .
MOLECULAR CANCER THERAPEUTICS, 2006, 5 (05) :1183-1189
[2]   The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway [J].
Arico, S ;
Petiot, A ;
Bauvy, C ;
Dubbelhuis, PF ;
Meijer, AJ ;
Codogno, P ;
Ogier-Denis, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (38) :35243-35246
[3]   A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets [J].
Arsham, AM ;
Howell, JJ ;
Simon, MC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (32) :29655-29660
[4]   Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells [J].
Boulay, A ;
Zumstein-Mecker, S ;
Stephan, C ;
Beuvink, I ;
Zilbermann, F ;
Haller, R ;
Tobler, S ;
Heusser, C ;
O'Reilly, T ;
Stolz, B ;
Marti, A ;
Thomas, G ;
Lane, HA .
CANCER RESEARCH, 2004, 64 (01) :252-261
[5]  
Brown JM, 1999, CANCER RES, V59, P1391
[6]   Opinion - The role of apoptosis in cancer development and treatment response [J].
Brown, JM ;
Attardi, LD .
NATURE REVIEWS CANCER, 2005, 5 (03) :231-237
[7]   Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin [J].
Brunn, GJ ;
Hudson, CC ;
Sekulic, A ;
Williams, JM ;
Hosoi, H ;
Houghton, PJ ;
Lawrence, JC ;
Abraham, RT .
SCIENCE, 1997, 277 (5322) :99-101
[8]   RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1 [J].
Burnett, PE ;
Barrow, RK ;
Cohen, NA ;
Snyder, SH ;
Sabatini, DM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (04) :1432-1437
[9]   The phosphoinositide 3-kinase pathway [J].
Cantley, LC .
SCIENCE, 2002, 296 (5573) :1655-1657
[10]   Targeting the mammalian target of rapamycin (mTOR): a new approach to treating cancer [J].
Chan, S .
BRITISH JOURNAL OF CANCER, 2004, 91 (08) :1420-1424