Improvement of Electrode/Electrolyte Interfaces in High-Voltage Spinel Lithium-Ion Batteries by Using Glutaric Anhydride as Electrolyte Additive

被引:93
作者
Bouayad, H. [1 ]
Wang, Z. [2 ]
Dupre, N. [2 ,5 ,6 ]
Dedryvere, R. [1 ,5 ,6 ]
Foix, D. [1 ,5 ,6 ]
Franger, S. [3 ]
Martin, J. -F. [4 ]
Boutafa, L. [4 ]
Patoux, S. [4 ]
Gonbeau, D. [1 ,5 ,6 ]
Guyomard, D. [2 ,5 ,6 ]
机构
[1] Univ Pau, CNRS UMR 5254, IPREM ECP, Pau, France
[2] Univ Nantes, CNRS UMR 6502, Inst Mat Jean Rouxel, Nantes, France
[3] Univ Paris Sud, CNRS UMR 8182, ICMMO EPCES, Orsay, France
[4] CEA, LITEN, Grenoble, France
[5] Alistore European Res Inst, F-80039 Amiens, France
[6] FR CNRS 3459, Reseau Stockage Electrochim Energie RS2E, Toulouse, France
关键词
MAS NMR; SUCCINIC ANHYDRIDE; CATHODE MATERIALS; LI-7; TRANSITION; LAYERS; DEINTERCALATION; CONDUCTIVITY; SPECTROSCOPY; IMPEDANCE;
D O I
10.1021/jp5001573
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-voltage spinet oxides combined with Li4Ti5O12 result in 3 V Li-ion batteries with a high power capability, but electrochemical performances are limited by electrode/electrolyte interfacial reactivity at high potential. We have investigated glutaric anhydride (GA) as an electrolyte additive to improve the performances of LiNi0.4Mn1.6O4/ Li4Ti5O12 cells. We showed that GA efficiently reduces both the capacity fading upon cycling and the self-discharge. From X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR), and electrochemical impedance spectroscopy (EIS) measurements, we showed that GA reduces salt (LiPF6) degradation. Addition of 2% GA in the electrolyte results in a passivation film at the surface of both electrodes, which is mainly composed of organic compounds resulting from degradation of GA. The film is much thicker but less resistive due to a better ionic conductivity, and behaves like a polymer electrolyte interface.
引用
收藏
页码:4634 / 4648
页数:15
相关论文
共 38 条
[1]   Preparation and electrochemical investigation of LiMn2-xMexO4 (Me:Ni, Fe, and x=0.5, 1) cathode materials for secondary lithium batteries [J].
Amine, K ;
Tukamoto, H ;
Yasuda, H ;
Fujita, Y .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :604-608
[2]   Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides [J].
Aurbach, D ;
Levi, MD ;
Levi, E ;
Teller, H ;
Markovsky, B ;
Salitra, G ;
Heider, U ;
Heider, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (09) :3024-3034
[3]   7Li NMR Knight Shifts in Li-Sn Compounds: MAS NMR Measurements and Correlation with DFT Calculations [J].
Bekaert, Emilie ;
Robert, Florent ;
Lippens, Pierre Emmanuel ;
Menetrier, Michel .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (14) :6749-6754
[4]   Modified carbons for improved anodes in lithium ion cells [J].
Buqa, H ;
Golob, P ;
Winter, M ;
Besenhard, JO .
JOURNAL OF POWER SOURCES, 2001, 97-8 :122-125
[5]   Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS [J].
Daheron, L. ;
Dedryvere, R. ;
Martinez, H. ;
Menetrier, M. ;
Denage, C. ;
Delmas, C. ;
Gonbeau, D. .
CHEMISTRY OF MATERIALS, 2008, 20 (02) :583-590
[6]   Electrode/Electrolyte Interface Reactivity in High-Voltage Spinel LiMn1.6Ni0.4O4/Li4Ti5O12 Lithium-Ion Battery [J].
Dedryvere, R. ;
Foix, D. ;
Franger, S. ;
Patoux, S. ;
Daniel, L. ;
Gonbeau, D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (24) :10999-11008
[7]   Detection of surface layers using 7Li MAS NMR [J].
Dupre, Nicolas ;
Martin, Jean-Frederic ;
Guyomard, Dominique ;
Yamada, Atsuo ;
Kanno, Ryoji .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (36) :4266-4273
[8]   SPINEL ANODES FOR LITHIUM-ION BATTERIES [J].
FERG, E ;
GUMMOW, RJ ;
DEKOCK, A ;
THACKERAY, MM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (11) :L147-L150
[9]   An electrochemical impedance spectroscopy study of new lithiated manganese oxides for 3 V application in rechargeable Li-batteries [J].
Franger, S ;
Bach, S ;
Farcy, J ;
Pereira-Ramos, JP ;
Baffier, N .
ELECTROCHIMICA ACTA, 2003, 48 (07) :891-900
[10]  
FROMENT M, 1979, J MICROSC SPECT ELEC, V4, P111