1.3-Å resolution structure of human glutathione S-transferase with S-hexyl glutathione bound reveals possible extended ligandin binding site

被引:52
作者
Le Trong, I
Stenkamp, RE
Ibarra, C
Atkins, WM
Adman, ET
机构
[1] Univ Washington, Dept Biol Struct, Seattle, WA 98195 USA
[2] Univ Washington, Dept Med Chem, Seattle, WA 98195 USA
关键词
glutathione S-transferase; X-ray structure; glutathione; water structure; ligandin;
D O I
10.1002/prot.10162
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cytosolic glutathione S-transferases (GSTs) play a critical role in xenobiotic binding and metabolism, as well as in modulation of oxidative stress. Here, the high-resolution X-ray crystal structures of homodimeric human GSTA1-1 in the apo form and in complex with S-hexyl glutathione (two data sets) are reported at 1.8, 1.5, and 1.3Angstrom respectively. At this level of resolution, distinct conformations of the alkyl chain of S-hexyl glutathione are observed, reflecting the nonspecific nature of the hydrophobic substrate binding site (H-site). Also, an extensive network of ordered water, including 75 discrete solvent molecules, traverses the open subunit-subunit interface and connects the glutathione binding sites in each subunit. In the highest-resolution structure, three glycerol moieties lie within this network and directly connect the amino termini of the glutathione molecules. A search for ligand binding sites with the docking program Molecular Operating Environment identified the ordered water network binding site, lined mainly with hydrophobic residues, suggesting an extended ligand binding surface for nonsubstrate ligands, the so-called ligandin site. Finally, detailed comparison of the structures reported here with previously published X-ray structures reveal a possible reaction coordinate for ligand-dependent conformational changes in the active site and the C-terminus. Proteins 2002;48:618-627. 02002Wiley-Liss,Ine.Cytosolic glutathione S-transferases (GSTs) play a critical role in xenobiotic binding and metabolism, as well as in modulation of oxidative stress. Here, the high-resolution X-ray crystal structures of homodimeric human GSTA1-1 in the apo form and in complex with S-hexyl nature of the hydrophobic substrate binding site (H-site). Also, an extensive network of ordered water, including 75 discrete solvent molecules, traverses the open subunit-subunit interface and connects the glutathione binding sites in each subunit. In the highest-resolution structure, three glycerol moieties lie within this network and directly connect the amino termini of the glutathione molecules. A search for ligand binding sites with the docking program Molecular Operating Environment identified the ordered water network binding site, lined mainly with hydrophobic residues, suggesting an extended ligand binding surface for nonsubstrate ligands, the so-called ligandin site. Finally, detailed comparison of the structures reported here with previously published X-ray structures reveal a possible reaction coordinate for ligand-dependent conformational changes in the active site and the C-terminus. Proteins (C) 2002Wiley-Liss,Inc.
引用
收藏
页码:618 / 627
页数:10
相关论文
共 32 条
[1]  
Adman ET, 2001, PROTEINS, V42, P192, DOI 10.1002/1097-0134(20010201)42:2<192::AID-PROT60>3.0.CO
[2]  
2-#
[3]   Structure, catalytic mechanism, and evolution of the glutathione transferases [J].
Armstrong, RN .
CHEMICAL RESEARCH IN TOXICOLOGY, 1997, 10 (01) :2-18
[4]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   ASSESSMENT OF PHASE ACCURACY BY CROSS VALIDATION - THE FREE R-VALUE - METHODS AND APPLICATIONS [J].
BRUNGER, AT .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1993, 49 :24-36
[7]   Human glutathione transferase A4-4 crystal structures and mutagenesis reveal the basis of high catalytic efficiency with toxic lipid peroxidation products [J].
Bruns, CM ;
Hubatsch, I ;
Ridderström, M ;
Mannervik, B ;
Tainer, JA .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 288 (03) :427-439
[8]   INTERACTION OF HEMIN WITH PLACENTAL GLUTATHIONE TRANSFERASE [J].
CACCURI, AM ;
ACETO, A ;
PIEMONTE, F ;
DIILIO, C ;
ROSATO, N ;
FEDERICI, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1990, 189 (03) :493-497
[9]   STRUCTURAL-ANALYSIS OF HUMAN ALPHA-CLASS GLUTATHIONE TRANSFERASE A1-1 IN THE APO-FORM AND IN COMPLEXES WITH ETHACRYNIC-ACID AND ITS GLUTATHIONE CONJUGATE [J].
CAMERON, AD ;
SINNING, I ;
LHERMITE, G ;
OLIN, B ;
BOARD, PG ;
MANNERVIK, B ;
JONES, TA .
STRUCTURE, 1995, 3 (07) :717-727
[10]  
*CHEM COMP GROUP, 2000, MOL OP ENV PACK