Evidence for a novel protease governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis

被引:97
作者
Ellermeier, Craig D. [1 ]
Losick, Richard [1 ]
机构
[1] Harvard Univ, Dept Mol & Cell Biol, Cambridge, MA 02138 USA
关键词
signal transduction; site-1; cleavage; ECF sigma factor; antimicrobial peptides;
D O I
10.1101/gad.1440606
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Evidence is presented that the activation of the RNA polymerase sigma factor sigma(W) in Bacillus subtilis by regulated intramembrane proteolysis is governed by a novel, membrane-embedded protease. The sigma(W) factor is activated by proteolytic destruction of the membrane-bound anti-sigma(W) factor RsiW in response to antimicrobial peptides and other agents that damage the cell envelope. RsiW is destroyed by successive proteolytic events known as Site-1 and Site-2 cleavage. Site-2 cleavage is mediated by a member of the SpoIVFB-S2P family of intramembrane-acting metalloproteases, but the protease responsible for Site-1 cleavage was unknown. We have identified a previously uncharacterized, multipass membrane protein called PrsW (annotated YpdC) that is both necessary and sufficient (when artificially produced in an unrelated host bacterium) for Site-1 cleavage of RsiW. PrsW is a member of a widespread family of membrane proteins that includes at least one previously known protease. We identify residues important for proteolysis and a cluster of acidic residues involved in sensing antimicrobial peptides and cell envelope stress.
引用
收藏
页码:1911 / 1922
页数:12
相关论文
共 61 条
[1]   The Escherichia coli σE-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-σ factor [J].
Ades, SE ;
Connolly, LE ;
Alba, BM ;
Gross, CA .
GENES & DEVELOPMENT, 1999, 13 (18) :2449-2461
[2]   DegS and YaeL participate sequentially in the cleavage of RseA to activate the σE-dependent extracytoplasmic stress response [J].
Alba, BM ;
Leeds, JA ;
Onufryk, C ;
Lu, CZ ;
Gross, CA .
GENES & DEVELOPMENT, 2002, 16 (16) :2156-2168
[3]   Recognition of antimicrobial peptides by a bacterial sensor kinase [J].
Bader, MW ;
Sanowar, S ;
Daley, ME ;
Schneider, AR ;
Cho, US ;
Xu, WQ ;
Klevit, RE ;
Le Moual, H ;
Miller, S .
CELL, 2005, 122 (03) :461-472
[4]   Modulation of Ras and a-factor function by carboxyl-terminal proteolysis [J].
Boyartchuk, VL ;
Ashby, MN ;
Rine, J .
SCIENCE, 1997, 275 (5307) :1796-1800
[5]  
Boyartchuk VL, 1998, GENETICS, V150, P95
[6]   The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor [J].
Brown, MS ;
Goldstein, JL .
CELL, 1997, 89 (03) :331-340
[7]   Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans [J].
Brown, MS ;
Ye, J ;
Rawson, RB ;
Goldstein, JL .
CELL, 2000, 100 (04) :391-398
[8]   A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood [J].
Brown, MS ;
Goldstein, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11041-11048
[9]   Identification of Bacillus subtilis σW-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli [J].
Butcher, BG ;
Helmann, JD .
MOLECULAR MICROBIOLOGY, 2006, 60 (03) :765-782
[10]  
CAMPO N, 2006, IN PRESS MOL CELL