Genome-wide functional analysis of human cell-cycle regulators

被引:109
作者
Mukherji, Mridul
Bell, Russell
Supekova, Lubica
Wang, Yan
Orth, Anthony P.
Batalov, Serge
Miraglia, Loren
Huesken, Dieter
Lange, Joerg
Martin, Christopher
Sahasrabudhe, Sudhir
Reinhardt, Mischa
Natt, Francois
Hall, Jonathan
Mickanin, Craig
Labow, Mark
Chanda, Sumit K.
Cho, Charles Y.
Schultz, Peter G.
机构
[1] Novartis Res Fdn, Genom Inst, San Diego, CA 92121 USA
[2] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
[3] Scripps Res Inst, Dept Chem, La Jolla, CA 92037 USA
[4] Protexys Pharmaceut Inc, Salt Lake City, UT 84116 USA
[5] Novartis Inst BioMed Res, CH-4002 Basel, Switzerland
[6] Novartis Inst BioMed Res Inc, Cambridge, MA 02139 USA
关键词
high-content screening; network analysis; small interfering RNA; human genome;
D O I
10.1073/pnas.0604320103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Human cells have evolved complex signaling networks to coordinate the cell cycle. A detailed understanding of the global regulation of this fundamental process requires comprehensive identification of the genes and pathways involved in the various stages of cell-cycle progression. To this end, we report a genome-wide analysis of the human cell cycle, cell size, and proliferation by targeting > 95% of the protein-coding genes in the human genome using small interfering RNAs (siRNAs). Analysis of > 2 million images, acquired by quantitative fluorescence microscopy, showed that depletion of 1,152 genes strongly affected cell-cycle progression. These genes clustered into eight distinct phenotypic categories based on phase of arrest, nuclear area, and nuclear morphology. Phase-specific networks were built by interrogating knowledge-based and physical interaction databases with identified genes. Genome-wide analysis of cell-cycle regulators revealed a number of kinase, phosphatase, and proteolytic proteins and also suggests that processes thought to regulate Gi-S phase progression like receptor-mediated signaling, nutrient status, and translation also play important roles in the regulation of G(2)/M phase transition. Moreover, 15 genes that are integral to TNF/NF-kappa B signaling were found to regulate G(2)/M, a previously unanticipated role for this pathway. These analyses provide systems-level insight into both known and novel genes as well as pathways that regulate cell-cycle progression, a number of which may provide new therapeutic approaches for the treatment of cancer.
引用
收藏
页码:14819 / 14824
页数:6
相关论文
共 35 条
[1]   Genome-wide RNAi screen for host factors required for intracellular bacterial infection [J].
Agaisse, H ;
Burrack, LS ;
Philips, JA ;
Rubin, EJ ;
Perrimon, N ;
Higgins, DE .
SCIENCE, 2005, 309 (5738) :1248-1251
[2]   Nuclear factor-κ-B:: The enemy within [J].
Aggarwal, BB .
CANCER CELL, 2004, 6 (03) :203-208
[3]   Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening [J].
Aza-Blanc, P ;
Cooper, CL ;
Wagner, K ;
Batalov, S ;
Deveraux, QL ;
Cooke, MP .
MOLECULAR CELL, 2003, 12 (03) :627-637
[4]   Crucial role of phospholipase CE in chemical carcinogen-induced skin tumor development [J].
Bai, YF ;
Edamatsu, H ;
Maeda, S ;
Saito, H ;
Suzuki, N ;
Satoh, T ;
Kataoka, T .
CANCER RESEARCH, 2004, 64 (24) :8808-8810
[5]   Regulation of the anaphase-promoting complex by the dual specificity phosphatase human Cdc14a [J].
Bembenek, J ;
Yu, HT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (51) :48237-48242
[6]   Genome-wide survey of protein kinases required for cell cycle progression [J].
Bettencourt-Dias, M ;
Giet, R ;
Sinka, R ;
Mazumdar, A ;
Lock, WG ;
Balloux, F ;
Zafiropoulos, PJ ;
Yamaguchi, S ;
Winter, S ;
Carthew, RW ;
Cooper, M ;
Jones, D ;
Frenz, L ;
Glover, DM .
NATURE, 2004, 432 (7020) :980-987
[7]   Identification of pathways regulating cell size and cell-cycle progression by RNAi [J].
Björklund, M ;
Taipale, M ;
Varjosalo, M ;
Saharinen, J ;
Lahdenperä, J ;
Taipale, J .
NATURE, 2006, 439 (7079) :1009-1013
[8]   Genome-wide RNAi analysis of growth and viability in Drosophila cells [J].
Boutros, M ;
Kiger, AA ;
Armknecht, S ;
Kerr, K ;
Hild, M ;
Koch, B ;
Haas, SA ;
Paro, R ;
Perrimon, N .
SCIENCE, 2004, 303 (5659) :832-835
[9]   A network-based analysis of systemic inflammation in humans [J].
Calvano, SE ;
Xiao, WZ ;
Richards, DR ;
Felciano, RM ;
Baker, HV ;
Cho, RJ ;
Chen, RO ;
Brownstein, BH ;
Cobb, JP ;
Tschoeke, SK ;
Miller-Graziano, C ;
Moldawer, LL ;
Mindrinos, MN ;
Davis, RW ;
Tompkins, RG ;
Lowry, SF .
NATURE, 2005, 437 (7061) :1032-1037
[10]   Functional diversity of protein phosphatase-1, a cellular economizer and reset button [J].
Ceulemans, H ;
Bollen, M .
PHYSIOLOGICAL REVIEWS, 2004, 84 (01) :1-39