In Silico Vaccine Design Based on Molecular Simulations of Rhinovirus Chimeras Presenting HIV-1 gp41 Epitopes

被引:33
作者
Lapelosa, Mauro [1 ,2 ,3 ]
Gallicchio, Emilio [1 ,2 ]
Arnold, Gail Ferstandig [2 ,3 ]
Arnold, Eddy [2 ,3 ]
Levy, Ronald M. [1 ,2 ]
机构
[1] Rutgers State Univ, BioMaPS Inst Quantitat Biol, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA
[3] Rutgers State Univ, Ctr Adv Biotechnol & Med, Piscataway, NJ 08854 USA
基金
美国国家卫生研究院;
关键词
vaccine design; monoclonal antibody 2F5; replica exchange method; chimeric virus; VIRUS TYPE-1 ENVELOPE; PROXIMAL EXTERNAL REGION; IMPLICIT SOLVENT MODEL; COMMON COLD VIRUS; ANTIBODY; 2F5; NEUTRALIZING ANTIBODIES; FORCE-FIELD; GLYCOPROTEIN; PEPTIDE; LOOP;
D O I
10.1016/j.jmb.2008.10.089
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A cluster of promising epitopes for the development of human immunodeficiency virus (HIV) vaccines is located in the membrane-proximal external region (MPER) of the gp41 subunit of the HIV envelope spike structure. The crystal structure of the peptide corresponding to the so-called ELDKWA epitope (HIV-1 HxB2 gp41 residues 662-668), in complex with the corresponding broadly neutralizing human monoclonal antibody 2F5, provides a target for structure-based vaccine design strategies aimed at finding macromolecular carriers that are able to present this MPER-derived epitope with optimal antigenic activity. To this end, a series of replica exchange molecular dynamics computer simulations was conducted to characterize the distributions of conformations of ELDKWA-based epitopes inserted into a rhinovirus carrier and to identify those with the highest fraction of conformations that are able to bind 2F5. The length, hydrophobic character, and precise site of insertion were found to be critical for achieving structural similarity to the target crystal structure. A construct with a high degree of complementarity to the corresponding determinant region of 2175 was obtained. This construct was employed to build a high-resolution structural model of the complex between the 2175 antibody and the chimeric human rhinovirus type 14:HIV-1 ELDKWA virus particle. Additional simulations, which were conducted to study the conformational propensities of the ELDKWA region in solution, confirm the hypothesis that the ELDKWA region of gp41 is highly flexible and capable of assuming helical conformations (as in the postfusion helical bundle structure) and beta-turn conformations (as in the complex with the 2F5 antibody). These results also suggest that the ELDKWA epitope can be involved in intramolecular-and likely intermolecular-hydrophobic interactions. This tendency offers an explanation for the observation that mutations decreasing the hydrophobic character of the MPER in many cases result in conformational changes that increase the affinity of this region for the 2175 antibody. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:675 / 691
页数:17
相关论文
共 61 条
[1]   ANALYSIS OF THE STRUCTURE OF A COMMON COLD VIRUS, HUMAN RHINOVIRUS-14, REFINED AT A RESOLUTION OF 3.0-A [J].
ARNOLD, E ;
ROSSMANN, MG .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 211 (04) :763-801
[2]   Integrated modeling program, applied chemical theory (IMPACT) [J].
Banks, JL ;
Beard, HS ;
Cao, YX ;
Cho, AE ;
Damm, W ;
Farid, R ;
Felts, AK ;
Halgren, TA ;
Mainz, DT ;
Maple, JR ;
Murphy, R ;
Philipp, DM ;
Repasky, MP ;
Zhang, LY ;
Berne, BJ ;
Friesner, RA ;
Gallicchio, E ;
Levy, RM .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1752-1780
[3]   Structural analysis of the epitope of the Anti-HIV antibody 2F5 sheds light into its mechanism of neutralization and HIV fusion [J].
Barbato, G ;
Bianchi, E ;
Ingallinella, P ;
Hurni, WH ;
Miller, MD ;
Cilibertol, G ;
Cortese, R ;
Bazzo, R ;
Shiver, JW ;
Pessi, A .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 330 (05) :1101-1115
[4]   Generalized born models of macromolecular solvation effects [J].
Bashford, D ;
Case, DA .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2000, 51 :129-152
[5]   A monomeric 310-helix is formed in water by a 13-residue peptide representing the neutralizing determinant of HIV-1 on gp41 [J].
Biron, Z ;
Khare, S ;
Samson, AO ;
Hayek, Y ;
Naider, F ;
Anglister, J .
BIOCHEMISTRY, 2002, 41 (42) :12687-12696
[6]   HIV vaccine design and the neutralizing antibody problem [J].
Burton, DR ;
Desrosiers, RC ;
Doms, RW ;
Koff, WC ;
Kwong, PD ;
Moore, JP ;
Nabel, GJ ;
Sodroski, J ;
Wilson, IA ;
Wyatt, RT .
NATURE IMMUNOLOGY, 2004, 5 (03) :233-236
[7]   Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41 [J].
Cardoso, RMF ;
Zwick, MB ;
Stanfield, RL ;
Kunert, R ;
Binley, JM ;
Katinger, H ;
Burton, DR ;
Wilson, IA .
IMMUNITY, 2005, 22 (02) :163-173
[8]   Core structure of gp41 from the HIV envelope glycoprotein [J].
Chan, DC ;
Fass, D ;
Berger, JM ;
Kim, PS .
CELL, 1997, 89 (02) :263-273
[9]   Antigenicity and immunogenicity of the HIV-1 gp41 epitope ELDKWA inserted into permissive sites of the MalE protein [J].
Coëffier, E ;
Clément, JM ;
Cussac, V ;
Khodaei-Boorane, N ;
Jehanno, M ;
Rojas, M ;
Dridi, A ;
Latour, M ;
El Habib, R ;
Barré-Sinoussi, F ;
Hofnung, M ;
Leclerc, C .
VACCINE, 2000, 19 (7-8) :684-693
[10]   SOLVENT-ACCESSIBLE SURFACES OF PROTEINS AND NUCLEIC-ACIDS [J].
CONNOLLY, ML .
SCIENCE, 1983, 221 (4612) :709-713