Lyapunov spectrum and the conjugate pairing rule for a thermostatted random Lorentz gas: Kinetic theory

被引:29
作者
Latz, A
vanBeijeren, H
Dorfman, JR
机构
[1] UNIV MARYLAND,DEPT PHYS,COLLEGE PK,MD 20742
[2] UNIV UTRECHT,INST THEORET PHYS,NL-3508 TA UTRECHT,NETHERLANDS
关键词
D O I
10.1103/PhysRevLett.78.207
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We calculate all four nonzero Lyapunov exponents for a three-dimensional, dilute, random Lorentz gas by combining dynamical systems and Boltzmann equation methods. in the presence of an external field and a Gaussian thermostat the Lyapunov exponents, calculated up to second order in the applied field, satisfy a conjugate pairing rule. Agreement of the results obtained here with those of computer simulations of Dellago and Posch [following Letter, Phys. Rev. Lett. 78, 211 (1997)].
引用
收藏
页码:207 / 210
页数:4
相关论文
共 19 条
[1]   FIELD-DEPENDENT CONDUCTIVITY AND DIFFUSION IN A 2-DIMENSIONAL LORENTZ GAS [J].
BARANYAI, A ;
EVANS, DJ ;
COHEN, EGD .
JOURNAL OF STATISTICAL PHYSICS, 1993, 70 (5-6) :1085-1098
[2]   STEADY-STATE ELECTRICAL-CONDUCTION IN THE PERIODIC LORENTZ GAS [J].
CHERNOV, NI ;
EYINK, GL ;
LEBOWITZ, JL ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 154 (03) :569-601
[3]   DERIVATION OF OHM LAW IN A DETERMINISTIC MECHANICAL MODEL [J].
CHERNOV, NI ;
EYINK, GL ;
LEBOWITZ, JL ;
SINAI, YG .
PHYSICAL REVIEW LETTERS, 1993, 70 (15) :2209-2212
[4]   NEW PROOF OF SINAIS FORMULA FOR THE ENTROPY OF HYPERBOLIC BILLIARD SYSTEMS - APPLICATION TO LORENTZ GASES AND BUNIMOVICH STADIUMS [J].
CHERNOV, NI .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1991, 25 (03) :204-219
[5]  
Crisanti A., 1993, SPRINGER SERIES SOLI, DOI DOI 10.1007/978-3-642-84942-8
[6]   Lyapunov spectrum and the conjugate pairing rule for a thermostatted random Lorentz gas: Numerical simulations [J].
Dellago, C ;
Posch, HA .
PHYSICAL REVIEW LETTERS, 1997, 78 (02) :211-214
[7]   Proof of Lyapunov exponent pairing for systems at constant kinetic energy [J].
Dettmann, CP ;
Morriss, GP .
PHYSICAL REVIEW E, 1996, 53 (06) :R5545-R5548
[8]  
Evans D.J., 1990, STAT MECH NONEQUILIB
[9]   VISCOSITY OF A SIMPLE FLUID FROM ITS MAXIMAL LYAPUNOV EXPONENTS [J].
EVANS, DJ ;
COHEN, EGD ;
MORRISS, GP .
PHYSICAL REVIEW A, 1990, 42 (10) :5990-5997
[10]  
Hoover WG., 1991, Computational Statistical Mechanics