Thrombin-induced growth cone collapse:: Involvement of phospholipase A2 and eicosanoid generation

被引:26
作者
de la Houssaye, BA
Mikule, K
Nikolic, D
Pfenninger, KH
机构
[1] Univ Colorado, Hlth Sci Ctr, Sch Med, Dept Cellular & Struct Biol, Denver, CO 80262 USA
[2] Univ Colorado, Ctr Canc, Denver, CO 80262 USA
关键词
growth cone; collapse; thrombin; signaling; phospholipase A(2); lipoxygenase;
D O I
10.1523/JNEUROSCI.19-24-10843.1999
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The studies presented here explore intracellular signals resulting from the action of repellents on growth cones. Growth cone challenge with thrombin or thrombin receptor-activating peptide (TRAP) triggers collapse via a receptor-mediated process. The results indicate that this involves activation of cytosolic phospholipase A(2) (PLA(2)) and eicosanoid synthesis. The collapse response to repellents targets at least two functional units of the growth cone, the actin cytoskeleton and substratum adhesion sites. We show in a cell-free assay that thrombin and TRAP cause the detachment of isolated growth cones from laminin. Biochemical analyses of isolated growth cones reveal that thrombin and TRAP stimulate cytosolic PLA(2) but not phospholipase C. In addition, thrombin stimulates synthesis of 12- and 15-hydroxyeicosatetraenoic acid (HETE) from the released arachidonic acid via a lipoxygenase (LO) pathway. A selective LO inhibitor blocks 12/15-HETE synthesis in growth cones and inhibits thrombin-induced growth cone collapse. Exogenously applied 12(S)-HETE mimics the thrombin effect and induces growth cone collapse in culture. These observations indicate that thrombin-induced growth cone collapse occurs by a mechanism that involves the activation of cytosolic PLA(2) and the generation of 12/15-HETE.
引用
收藏
页码:10843 / 10855
页数:13
相关论文
共 76 条
[1]   INDUCTION OF MEMBRANE RUFFLING AND FLUID-PHASE PINOCYTOSIS IN QUIESCENT FIBROBLASTS BY RAS PROTEINS [J].
BARSAGI, D ;
FERAMISCO, JR .
SCIENCE, 1986, 233 (4768) :1061-1068
[2]  
BARSAGI D, 1989, CELL ACTIVATION SIGN, P331
[3]  
BIRKLE DL, 1988, NEUROMETHODS, V7, P227
[4]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]  
Brennan C, 1997, DEVELOPMENT, V124, P655
[7]   CYTOCHROME-P450 AND THE ARACHIDONATE CASCADE [J].
CAPDEVILA, JH ;
FALCK, JR ;
ESTABROOK, RW .
FASEB JOURNAL, 1992, 6 (02) :731-736
[8]   NOVEL CAFFEIC ACID-DERIVATIVES - EXTREMELY POTENT INHIBITORS OF 12-LIPOXYGENASE [J].
CHO, H ;
UEDA, M ;
TAMAOKA, M ;
HAMAGUCHI, M ;
AISAKA, K ;
KISO, Y ;
INOUE, T ;
OGINO, R ;
TATSUOKA, T ;
ISHIHARA, T ;
NOGUCHI, T ;
MORITA, I ;
MUROTA, S .
JOURNAL OF MEDICINAL CHEMISTRY, 1991, 34 (04) :1503-1505
[9]   MYOSIN IS INVOLVED IN POSTMITOTIC CELL SPREADING [J].
CRAMER, LP ;
MITCHISON, TJ .
JOURNAL OF CELL BIOLOGY, 1995, 131 (01) :179-189
[10]  
CROUCH MF, 1988, J BIOL CHEM, V263, P3363